Gentoo Archives: gentoo-commits

From: Mike Pagano <mpagano@g.o>
To: gentoo-commits@l.g.o
Subject: [gentoo-commits] proj/linux-patches:5.17 commit in: /
Date: Mon, 30 May 2022 13:58:27
Message-Id: 1653919087.a8ee0e96ec8829dcec0a8fac8e0f9203189002d3.mpagano@gentoo
1 commit: a8ee0e96ec8829dcec0a8fac8e0f9203189002d3
2 Author: Mike Pagano <mpagano <AT> gentoo <DOT> org>
3 AuthorDate: Mon May 30 13:58:07 2022 +0000
4 Commit: Mike Pagano <mpagano <AT> gentoo <DOT> org>
5 CommitDate: Mon May 30 13:58:07 2022 +0000
6 URL: https://gitweb.gentoo.org/proj/linux-patches.git/commit/?id=a8ee0e96
7
8 Linux patch 5.17.12
9
10 Signed-off-by: Mike Pagano <mpagano <AT> gentoo.org>
11
12 0000_README | 4 +
13 1011_linux-5.17.12.patch | 4650 ++++++++++++++++++++++++++++++++++++++++++++++
14 2 files changed, 4654 insertions(+)
15
16 diff --git a/0000_README b/0000_README
17 index 8aed7c53..ecb45bb4 100644
18 --- a/0000_README
19 +++ b/0000_README
20 @@ -87,6 +87,10 @@ Patch: 1010_linux-5.17.11.patch
21 From: http://www.kernel.org
22 Desc: Linux 5.17.11
23
24 +Patch: 1011_linux-5.17.12.patch
25 +From: http://www.kernel.org
26 +Desc: Linux 5.17.12
27 +
28 Patch: 1500_XATTR_USER_PREFIX.patch
29 From: https://bugs.gentoo.org/show_bug.cgi?id=470644
30 Desc: Support for namespace user.pax.* on tmpfs.
31
32 diff --git a/1011_linux-5.17.12.patch b/1011_linux-5.17.12.patch
33 new file mode 100644
34 index 00000000..185a60e2
35 --- /dev/null
36 +++ b/1011_linux-5.17.12.patch
37 @@ -0,0 +1,4650 @@
38 +diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
39 +index 59f881f367793..ad67b848d04ee 100644
40 +--- a/Documentation/admin-guide/kernel-parameters.txt
41 ++++ b/Documentation/admin-guide/kernel-parameters.txt
42 +@@ -4355,6 +4355,12 @@
43 + fully seed the kernel's CRNG. Default is controlled
44 + by CONFIG_RANDOM_TRUST_CPU.
45 +
46 ++ random.trust_bootloader={on,off}
47 ++ [KNL] Enable or disable trusting the use of a
48 ++ seed passed by the bootloader (if available) to
49 ++ fully seed the kernel's CRNG. Default is controlled
50 ++ by CONFIG_RANDOM_TRUST_BOOTLOADER.
51 ++
52 + randomize_kstack_offset=
53 + [KNL] Enable or disable kernel stack offset
54 + randomization, which provides roughly 5 bits of
55 +diff --git a/Documentation/admin-guide/sysctl/kernel.rst b/Documentation/admin-guide/sysctl/kernel.rst
56 +index 0f86e9f931293..264735c5d0bda 100644
57 +--- a/Documentation/admin-guide/sysctl/kernel.rst
58 ++++ b/Documentation/admin-guide/sysctl/kernel.rst
59 +@@ -1025,28 +1025,22 @@ This is a directory, with the following entries:
60 + * ``boot_id``: a UUID generated the first time this is retrieved, and
61 + unvarying after that;
62 +
63 ++* ``uuid``: a UUID generated every time this is retrieved (this can
64 ++ thus be used to generate UUIDs at will);
65 ++
66 + * ``entropy_avail``: the pool's entropy count, in bits;
67 +
68 + * ``poolsize``: the entropy pool size, in bits;
69 +
70 + * ``urandom_min_reseed_secs``: obsolete (used to determine the minimum
71 +- number of seconds between urandom pool reseeding).
72 +-
73 +-* ``uuid``: a UUID generated every time this is retrieved (this can
74 +- thus be used to generate UUIDs at will);
75 ++ number of seconds between urandom pool reseeding). This file is
76 ++ writable for compatibility purposes, but writing to it has no effect
77 ++ on any RNG behavior;
78 +
79 + * ``write_wakeup_threshold``: when the entropy count drops below this
80 + (as a number of bits), processes waiting to write to ``/dev/random``
81 +- are woken up.
82 +-
83 +-If ``drivers/char/random.c`` is built with ``ADD_INTERRUPT_BENCH``
84 +-defined, these additional entries are present:
85 +-
86 +-* ``add_interrupt_avg_cycles``: the average number of cycles between
87 +- interrupts used to feed the pool;
88 +-
89 +-* ``add_interrupt_avg_deviation``: the standard deviation seen on the
90 +- number of cycles between interrupts used to feed the pool.
91 ++ are woken up. This file is writable for compatibility purposes, but
92 ++ writing to it has no effect on any RNG behavior.
93 +
94 +
95 + randomize_va_space
96 +diff --git a/Makefile b/Makefile
97 +index b821f270a4ca6..25c44dda0ef37 100644
98 +--- a/Makefile
99 ++++ b/Makefile
100 +@@ -1,7 +1,7 @@
101 + # SPDX-License-Identifier: GPL-2.0
102 + VERSION = 5
103 + PATCHLEVEL = 17
104 +-SUBLEVEL = 11
105 ++SUBLEVEL = 12
106 + EXTRAVERSION =
107 + NAME = Superb Owl
108 +
109 +diff --git a/arch/alpha/include/asm/timex.h b/arch/alpha/include/asm/timex.h
110 +index b565cc6f408e9..f89798da8a147 100644
111 +--- a/arch/alpha/include/asm/timex.h
112 ++++ b/arch/alpha/include/asm/timex.h
113 +@@ -28,5 +28,6 @@ static inline cycles_t get_cycles (void)
114 + __asm__ __volatile__ ("rpcc %0" : "=r"(ret));
115 + return ret;
116 + }
117 ++#define get_cycles get_cycles
118 +
119 + #endif
120 +diff --git a/arch/arm/include/asm/timex.h b/arch/arm/include/asm/timex.h
121 +index 7c3b3671d6c25..6d1337c169cd3 100644
122 +--- a/arch/arm/include/asm/timex.h
123 ++++ b/arch/arm/include/asm/timex.h
124 +@@ -11,5 +11,6 @@
125 +
126 + typedef unsigned long cycles_t;
127 + #define get_cycles() ({ cycles_t c; read_current_timer(&c) ? 0 : c; })
128 ++#define random_get_entropy() (((unsigned long)get_cycles()) ?: random_get_entropy_fallback())
129 +
130 + #endif
131 +diff --git a/arch/ia64/include/asm/timex.h b/arch/ia64/include/asm/timex.h
132 +index 869a3ac6bf23a..7ccc077a60bed 100644
133 +--- a/arch/ia64/include/asm/timex.h
134 ++++ b/arch/ia64/include/asm/timex.h
135 +@@ -39,6 +39,7 @@ get_cycles (void)
136 + ret = ia64_getreg(_IA64_REG_AR_ITC);
137 + return ret;
138 + }
139 ++#define get_cycles get_cycles
140 +
141 + extern void ia64_cpu_local_tick (void);
142 + extern unsigned long long ia64_native_sched_clock (void);
143 +diff --git a/arch/m68k/include/asm/timex.h b/arch/m68k/include/asm/timex.h
144 +index 6a21d93582805..f4a7a340f4cae 100644
145 +--- a/arch/m68k/include/asm/timex.h
146 ++++ b/arch/m68k/include/asm/timex.h
147 +@@ -35,7 +35,7 @@ static inline unsigned long random_get_entropy(void)
148 + {
149 + if (mach_random_get_entropy)
150 + return mach_random_get_entropy();
151 +- return 0;
152 ++ return random_get_entropy_fallback();
153 + }
154 + #define random_get_entropy random_get_entropy
155 +
156 +diff --git a/arch/mips/include/asm/timex.h b/arch/mips/include/asm/timex.h
157 +index 8026baf46e729..2e107886f97ac 100644
158 +--- a/arch/mips/include/asm/timex.h
159 ++++ b/arch/mips/include/asm/timex.h
160 +@@ -76,25 +76,24 @@ static inline cycles_t get_cycles(void)
161 + else
162 + return 0; /* no usable counter */
163 + }
164 ++#define get_cycles get_cycles
165 +
166 + /*
167 + * Like get_cycles - but where c0_count is not available we desperately
168 + * use c0_random in an attempt to get at least a little bit of entropy.
169 +- *
170 +- * R6000 and R6000A neither have a count register nor a random register.
171 +- * That leaves no entropy source in the CPU itself.
172 + */
173 + static inline unsigned long random_get_entropy(void)
174 + {
175 +- unsigned int prid = read_c0_prid();
176 +- unsigned int imp = prid & PRID_IMP_MASK;
177 ++ unsigned int c0_random;
178 +
179 +- if (can_use_mips_counter(prid))
180 ++ if (can_use_mips_counter(read_c0_prid()))
181 + return read_c0_count();
182 +- else if (likely(imp != PRID_IMP_R6000 && imp != PRID_IMP_R6000A))
183 +- return read_c0_random();
184 ++
185 ++ if (cpu_has_3kex)
186 ++ c0_random = (read_c0_random() >> 8) & 0x3f;
187 + else
188 +- return 0; /* no usable register */
189 ++ c0_random = read_c0_random() & 0x3f;
190 ++ return (random_get_entropy_fallback() << 6) | (0x3f - c0_random);
191 + }
192 + #define random_get_entropy random_get_entropy
193 +
194 +diff --git a/arch/nios2/include/asm/timex.h b/arch/nios2/include/asm/timex.h
195 +index a769f871b28d9..40a1adc9bd03e 100644
196 +--- a/arch/nios2/include/asm/timex.h
197 ++++ b/arch/nios2/include/asm/timex.h
198 +@@ -8,5 +8,8 @@
199 + typedef unsigned long cycles_t;
200 +
201 + extern cycles_t get_cycles(void);
202 ++#define get_cycles get_cycles
203 ++
204 ++#define random_get_entropy() (((unsigned long)get_cycles()) ?: random_get_entropy_fallback())
205 +
206 + #endif
207 +diff --git a/arch/parisc/include/asm/timex.h b/arch/parisc/include/asm/timex.h
208 +index 06b510f8172e3..b4622cb06a75e 100644
209 +--- a/arch/parisc/include/asm/timex.h
210 ++++ b/arch/parisc/include/asm/timex.h
211 +@@ -13,9 +13,10 @@
212 +
213 + typedef unsigned long cycles_t;
214 +
215 +-static inline cycles_t get_cycles (void)
216 ++static inline cycles_t get_cycles(void)
217 + {
218 + return mfctl(16);
219 + }
220 ++#define get_cycles get_cycles
221 +
222 + #endif
223 +diff --git a/arch/powerpc/include/asm/timex.h b/arch/powerpc/include/asm/timex.h
224 +index fa2e76e4093a3..14b4489de52c5 100644
225 +--- a/arch/powerpc/include/asm/timex.h
226 ++++ b/arch/powerpc/include/asm/timex.h
227 +@@ -19,6 +19,7 @@ static inline cycles_t get_cycles(void)
228 + {
229 + return mftb();
230 + }
231 ++#define get_cycles get_cycles
232 +
233 + #endif /* __KERNEL__ */
234 + #endif /* _ASM_POWERPC_TIMEX_H */
235 +diff --git a/arch/riscv/include/asm/timex.h b/arch/riscv/include/asm/timex.h
236 +index 507cae273bc62..d6a7428f6248d 100644
237 +--- a/arch/riscv/include/asm/timex.h
238 ++++ b/arch/riscv/include/asm/timex.h
239 +@@ -41,7 +41,7 @@ static inline u32 get_cycles_hi(void)
240 + static inline unsigned long random_get_entropy(void)
241 + {
242 + if (unlikely(clint_time_val == NULL))
243 +- return 0;
244 ++ return random_get_entropy_fallback();
245 + return get_cycles();
246 + }
247 + #define random_get_entropy() random_get_entropy()
248 +diff --git a/arch/s390/include/asm/timex.h b/arch/s390/include/asm/timex.h
249 +index 50d9b04ecbd14..bc50ee0e91ff1 100644
250 +--- a/arch/s390/include/asm/timex.h
251 ++++ b/arch/s390/include/asm/timex.h
252 +@@ -201,6 +201,7 @@ static inline cycles_t get_cycles(void)
253 + {
254 + return (cycles_t) get_tod_clock() >> 2;
255 + }
256 ++#define get_cycles get_cycles
257 +
258 + int get_phys_clock(unsigned long *clock);
259 + void init_cpu_timer(void);
260 +diff --git a/arch/sparc/include/asm/timex_32.h b/arch/sparc/include/asm/timex_32.h
261 +index 542915b462097..f86326a6f89e0 100644
262 +--- a/arch/sparc/include/asm/timex_32.h
263 ++++ b/arch/sparc/include/asm/timex_32.h
264 +@@ -9,8 +9,6 @@
265 +
266 + #define CLOCK_TICK_RATE 1193180 /* Underlying HZ */
267 +
268 +-/* XXX Maybe do something better at some point... -DaveM */
269 +-typedef unsigned long cycles_t;
270 +-#define get_cycles() (0)
271 ++#include <asm-generic/timex.h>
272 +
273 + #endif
274 +diff --git a/arch/um/include/asm/timex.h b/arch/um/include/asm/timex.h
275 +index e392a9a5bc9bd..9f27176adb26d 100644
276 +--- a/arch/um/include/asm/timex.h
277 ++++ b/arch/um/include/asm/timex.h
278 +@@ -2,13 +2,8 @@
279 + #ifndef __UM_TIMEX_H
280 + #define __UM_TIMEX_H
281 +
282 +-typedef unsigned long cycles_t;
283 +-
284 +-static inline cycles_t get_cycles (void)
285 +-{
286 +- return 0;
287 +-}
288 +-
289 + #define CLOCK_TICK_RATE (HZ)
290 +
291 ++#include <asm-generic/timex.h>
292 ++
293 + #endif
294 +diff --git a/arch/x86/include/asm/timex.h b/arch/x86/include/asm/timex.h
295 +index a4a8b1b16c0c1..956e4145311b1 100644
296 +--- a/arch/x86/include/asm/timex.h
297 ++++ b/arch/x86/include/asm/timex.h
298 +@@ -5,6 +5,15 @@
299 + #include <asm/processor.h>
300 + #include <asm/tsc.h>
301 +
302 ++static inline unsigned long random_get_entropy(void)
303 ++{
304 ++ if (!IS_ENABLED(CONFIG_X86_TSC) &&
305 ++ !cpu_feature_enabled(X86_FEATURE_TSC))
306 ++ return random_get_entropy_fallback();
307 ++ return rdtsc();
308 ++}
309 ++#define random_get_entropy random_get_entropy
310 ++
311 + /* Assume we use the PIT time source for the clock tick */
312 + #define CLOCK_TICK_RATE PIT_TICK_RATE
313 +
314 +diff --git a/arch/x86/include/asm/tsc.h b/arch/x86/include/asm/tsc.h
315 +index 01a300a9700b9..fbdc3d9514943 100644
316 +--- a/arch/x86/include/asm/tsc.h
317 ++++ b/arch/x86/include/asm/tsc.h
318 +@@ -20,13 +20,12 @@ extern void disable_TSC(void);
319 +
320 + static inline cycles_t get_cycles(void)
321 + {
322 +-#ifndef CONFIG_X86_TSC
323 +- if (!boot_cpu_has(X86_FEATURE_TSC))
324 ++ if (!IS_ENABLED(CONFIG_X86_TSC) &&
325 ++ !cpu_feature_enabled(X86_FEATURE_TSC))
326 + return 0;
327 +-#endif
328 +-
329 + return rdtsc();
330 + }
331 ++#define get_cycles get_cycles
332 +
333 + extern struct system_counterval_t convert_art_to_tsc(u64 art);
334 + extern struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns);
335 +diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c
336 +index 32333dfc85b6a..495329ae6b1b2 100644
337 +--- a/arch/x86/kvm/mmu/mmu.c
338 ++++ b/arch/x86/kvm/mmu/mmu.c
339 +@@ -5416,14 +5416,16 @@ void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
340 + uint i;
341 +
342 + if (pcid == kvm_get_active_pcid(vcpu)) {
343 +- mmu->invlpg(vcpu, gva, mmu->root_hpa);
344 ++ if (mmu->invlpg)
345 ++ mmu->invlpg(vcpu, gva, mmu->root_hpa);
346 + tlb_flush = true;
347 + }
348 +
349 + for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
350 + if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
351 + pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
352 +- mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
353 ++ if (mmu->invlpg)
354 ++ mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
355 + tlb_flush = true;
356 + }
357 + }
358 +diff --git a/arch/xtensa/include/asm/timex.h b/arch/xtensa/include/asm/timex.h
359 +index 233ec75e60c69..3f2462f2d0270 100644
360 +--- a/arch/xtensa/include/asm/timex.h
361 ++++ b/arch/xtensa/include/asm/timex.h
362 +@@ -29,10 +29,6 @@
363 +
364 + extern unsigned long ccount_freq;
365 +
366 +-typedef unsigned long long cycles_t;
367 +-
368 +-#define get_cycles() (0)
369 +-
370 + void local_timer_setup(unsigned cpu);
371 +
372 + /*
373 +@@ -59,4 +55,6 @@ static inline void set_linux_timer (unsigned long ccompare)
374 + xtensa_set_sr(ccompare, SREG_CCOMPARE + LINUX_TIMER);
375 + }
376 +
377 ++#include <asm-generic/timex.h>
378 ++
379 + #endif /* _XTENSA_TIMEX_H */
380 +diff --git a/drivers/acpi/sysfs.c b/drivers/acpi/sysfs.c
381 +index a4b638bea6f16..cc2fe0618178e 100644
382 +--- a/drivers/acpi/sysfs.c
383 ++++ b/drivers/acpi/sysfs.c
384 +@@ -415,19 +415,30 @@ static ssize_t acpi_data_show(struct file *filp, struct kobject *kobj,
385 + loff_t offset, size_t count)
386 + {
387 + struct acpi_data_attr *data_attr;
388 +- void *base;
389 +- ssize_t rc;
390 ++ void __iomem *base;
391 ++ ssize_t size;
392 +
393 + data_attr = container_of(bin_attr, struct acpi_data_attr, attr);
394 ++ size = data_attr->attr.size;
395 ++
396 ++ if (offset < 0)
397 ++ return -EINVAL;
398 ++
399 ++ if (offset >= size)
400 ++ return 0;
401 +
402 +- base = acpi_os_map_memory(data_attr->addr, data_attr->attr.size);
403 ++ if (count > size - offset)
404 ++ count = size - offset;
405 ++
406 ++ base = acpi_os_map_iomem(data_attr->addr, size);
407 + if (!base)
408 + return -ENOMEM;
409 +- rc = memory_read_from_buffer(buf, count, &offset, base,
410 +- data_attr->attr.size);
411 +- acpi_os_unmap_memory(base, data_attr->attr.size);
412 +
413 +- return rc;
414 ++ memcpy_fromio(buf, base + offset, count);
415 ++
416 ++ acpi_os_unmap_iomem(base, size);
417 ++
418 ++ return count;
419 + }
420 +
421 + static int acpi_bert_data_init(void *th, struct acpi_data_attr *data_attr)
422 +diff --git a/drivers/char/Kconfig b/drivers/char/Kconfig
423 +index 740811893c570..55f48375e3fe5 100644
424 +--- a/drivers/char/Kconfig
425 ++++ b/drivers/char/Kconfig
426 +@@ -449,6 +449,7 @@ config RANDOM_TRUST_BOOTLOADER
427 + device randomness. Say Y here to assume the entropy provided by the
428 + booloader is trustworthy so it will be added to the kernel's entropy
429 + pool. Otherwise, say N here so it will be regarded as device input that
430 +- only mixes the entropy pool.
431 ++ only mixes the entropy pool. This can also be configured at boot with
432 ++ "random.trust_bootloader=on/off".
433 +
434 + endmenu
435 +diff --git a/drivers/char/hw_random/core.c b/drivers/char/hw_random/core.c
436 +index a3db27916256d..cfb085de876b7 100644
437 +--- a/drivers/char/hw_random/core.c
438 ++++ b/drivers/char/hw_random/core.c
439 +@@ -15,6 +15,7 @@
440 + #include <linux/err.h>
441 + #include <linux/fs.h>
442 + #include <linux/hw_random.h>
443 ++#include <linux/random.h>
444 + #include <linux/kernel.h>
445 + #include <linux/kthread.h>
446 + #include <linux/sched/signal.h>
447 +diff --git a/drivers/char/random.c b/drivers/char/random.c
448 +index 3404a91edf292..92428bfdc1431 100644
449 +--- a/drivers/char/random.c
450 ++++ b/drivers/char/random.c
451 +@@ -1,320 +1,26 @@
452 ++// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
453 + /*
454 +- * random.c -- A strong random number generator
455 +- *
456 + * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@×××××.com>. All Rights Reserved.
457 +- *
458 + * Copyright Matt Mackall <mpm@×××××××.com>, 2003, 2004, 2005
459 +- *
460 +- * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
461 +- * rights reserved.
462 +- *
463 +- * Redistribution and use in source and binary forms, with or without
464 +- * modification, are permitted provided that the following conditions
465 +- * are met:
466 +- * 1. Redistributions of source code must retain the above copyright
467 +- * notice, and the entire permission notice in its entirety,
468 +- * including the disclaimer of warranties.
469 +- * 2. Redistributions in binary form must reproduce the above copyright
470 +- * notice, this list of conditions and the following disclaimer in the
471 +- * documentation and/or other materials provided with the distribution.
472 +- * 3. The name of the author may not be used to endorse or promote
473 +- * products derived from this software without specific prior
474 +- * written permission.
475 +- *
476 +- * ALTERNATIVELY, this product may be distributed under the terms of
477 +- * the GNU General Public License, in which case the provisions of the GPL are
478 +- * required INSTEAD OF the above restrictions. (This clause is
479 +- * necessary due to a potential bad interaction between the GPL and
480 +- * the restrictions contained in a BSD-style copyright.)
481 +- *
482 +- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
483 +- * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
484 +- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
485 +- * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
486 +- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
487 +- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
488 +- * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
489 +- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
490 +- * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
491 +- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
492 +- * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
493 +- * DAMAGE.
494 +- */
495 +-
496 +-/*
497 +- * (now, with legal B.S. out of the way.....)
498 +- *
499 +- * This routine gathers environmental noise from device drivers, etc.,
500 +- * and returns good random numbers, suitable for cryptographic use.
501 +- * Besides the obvious cryptographic uses, these numbers are also good
502 +- * for seeding TCP sequence numbers, and other places where it is
503 +- * desirable to have numbers which are not only random, but hard to
504 +- * predict by an attacker.
505 +- *
506 +- * Theory of operation
507 +- * ===================
508 +- *
509 +- * Computers are very predictable devices. Hence it is extremely hard
510 +- * to produce truly random numbers on a computer --- as opposed to
511 +- * pseudo-random numbers, which can easily generated by using a
512 +- * algorithm. Unfortunately, it is very easy for attackers to guess
513 +- * the sequence of pseudo-random number generators, and for some
514 +- * applications this is not acceptable. So instead, we must try to
515 +- * gather "environmental noise" from the computer's environment, which
516 +- * must be hard for outside attackers to observe, and use that to
517 +- * generate random numbers. In a Unix environment, this is best done
518 +- * from inside the kernel.
519 +- *
520 +- * Sources of randomness from the environment include inter-keyboard
521 +- * timings, inter-interrupt timings from some interrupts, and other
522 +- * events which are both (a) non-deterministic and (b) hard for an
523 +- * outside observer to measure. Randomness from these sources are
524 +- * added to an "entropy pool", which is mixed using a CRC-like function.
525 +- * This is not cryptographically strong, but it is adequate assuming
526 +- * the randomness is not chosen maliciously, and it is fast enough that
527 +- * the overhead of doing it on every interrupt is very reasonable.
528 +- * As random bytes are mixed into the entropy pool, the routines keep
529 +- * an *estimate* of how many bits of randomness have been stored into
530 +- * the random number generator's internal state.
531 +- *
532 +- * When random bytes are desired, they are obtained by taking the BLAKE2s
533 +- * hash of the contents of the "entropy pool". The BLAKE2s hash avoids
534 +- * exposing the internal state of the entropy pool. It is believed to
535 +- * be computationally infeasible to derive any useful information
536 +- * about the input of BLAKE2s from its output. Even if it is possible to
537 +- * analyze BLAKE2s in some clever way, as long as the amount of data
538 +- * returned from the generator is less than the inherent entropy in
539 +- * the pool, the output data is totally unpredictable. For this
540 +- * reason, the routine decreases its internal estimate of how many
541 +- * bits of "true randomness" are contained in the entropy pool as it
542 +- * outputs random numbers.
543 +- *
544 +- * If this estimate goes to zero, the routine can still generate
545 +- * random numbers; however, an attacker may (at least in theory) be
546 +- * able to infer the future output of the generator from prior
547 +- * outputs. This requires successful cryptanalysis of BLAKE2s, which is
548 +- * not believed to be feasible, but there is a remote possibility.
549 +- * Nonetheless, these numbers should be useful for the vast majority
550 +- * of purposes.
551 +- *
552 +- * Exported interfaces ---- output
553 +- * ===============================
554 +- *
555 +- * There are four exported interfaces; two for use within the kernel,
556 +- * and two for use from userspace.
557 +- *
558 +- * Exported interfaces ---- userspace output
559 +- * -----------------------------------------
560 +- *
561 +- * The userspace interfaces are two character devices /dev/random and
562 +- * /dev/urandom. /dev/random is suitable for use when very high
563 +- * quality randomness is desired (for example, for key generation or
564 +- * one-time pads), as it will only return a maximum of the number of
565 +- * bits of randomness (as estimated by the random number generator)
566 +- * contained in the entropy pool.
567 +- *
568 +- * The /dev/urandom device does not have this limit, and will return
569 +- * as many bytes as are requested. As more and more random bytes are
570 +- * requested without giving time for the entropy pool to recharge,
571 +- * this will result in random numbers that are merely cryptographically
572 +- * strong. For many applications, however, this is acceptable.
573 +- *
574 +- * Exported interfaces ---- kernel output
575 +- * --------------------------------------
576 +- *
577 +- * The primary kernel interface is
578 +- *
579 +- * void get_random_bytes(void *buf, int nbytes);
580 +- *
581 +- * This interface will return the requested number of random bytes,
582 +- * and place it in the requested buffer. This is equivalent to a
583 +- * read from /dev/urandom.
584 +- *
585 +- * For less critical applications, there are the functions:
586 +- *
587 +- * u32 get_random_u32()
588 +- * u64 get_random_u64()
589 +- * unsigned int get_random_int()
590 +- * unsigned long get_random_long()
591 +- *
592 +- * These are produced by a cryptographic RNG seeded from get_random_bytes,
593 +- * and so do not deplete the entropy pool as much. These are recommended
594 +- * for most in-kernel operations *if the result is going to be stored in
595 +- * the kernel*.
596 +- *
597 +- * Specifically, the get_random_int() family do not attempt to do
598 +- * "anti-backtracking". If you capture the state of the kernel (e.g.
599 +- * by snapshotting the VM), you can figure out previous get_random_int()
600 +- * return values. But if the value is stored in the kernel anyway,
601 +- * this is not a problem.
602 +- *
603 +- * It *is* safe to expose get_random_int() output to attackers (e.g. as
604 +- * network cookies); given outputs 1..n, it's not feasible to predict
605 +- * outputs 0 or n+1. The only concern is an attacker who breaks into
606 +- * the kernel later; the get_random_int() engine is not reseeded as
607 +- * often as the get_random_bytes() one.
608 +- *
609 +- * get_random_bytes() is needed for keys that need to stay secret after
610 +- * they are erased from the kernel. For example, any key that will
611 +- * be wrapped and stored encrypted. And session encryption keys: we'd
612 +- * like to know that after the session is closed and the keys erased,
613 +- * the plaintext is unrecoverable to someone who recorded the ciphertext.
614 +- *
615 +- * But for network ports/cookies, stack canaries, PRNG seeds, address
616 +- * space layout randomization, session *authentication* keys, or other
617 +- * applications where the sensitive data is stored in the kernel in
618 +- * plaintext for as long as it's sensitive, the get_random_int() family
619 +- * is just fine.
620 +- *
621 +- * Consider ASLR. We want to keep the address space secret from an
622 +- * outside attacker while the process is running, but once the address
623 +- * space is torn down, it's of no use to an attacker any more. And it's
624 +- * stored in kernel data structures as long as it's alive, so worrying
625 +- * about an attacker's ability to extrapolate it from the get_random_int()
626 +- * CRNG is silly.
627 +- *
628 +- * Even some cryptographic keys are safe to generate with get_random_int().
629 +- * In particular, keys for SipHash are generally fine. Here, knowledge
630 +- * of the key authorizes you to do something to a kernel object (inject
631 +- * packets to a network connection, or flood a hash table), and the
632 +- * key is stored with the object being protected. Once it goes away,
633 +- * we no longer care if anyone knows the key.
634 +- *
635 +- * prandom_u32()
636 +- * -------------
637 +- *
638 +- * For even weaker applications, see the pseudorandom generator
639 +- * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
640 +- * numbers aren't security-critical at all, these are *far* cheaper.
641 +- * Useful for self-tests, random error simulation, randomized backoffs,
642 +- * and any other application where you trust that nobody is trying to
643 +- * maliciously mess with you by guessing the "random" numbers.
644 +- *
645 +- * Exported interfaces ---- input
646 +- * ==============================
647 +- *
648 +- * The current exported interfaces for gathering environmental noise
649 +- * from the devices are:
650 +- *
651 +- * void add_device_randomness(const void *buf, unsigned int size);
652 +- * void add_input_randomness(unsigned int type, unsigned int code,
653 +- * unsigned int value);
654 +- * void add_interrupt_randomness(int irq);
655 +- * void add_disk_randomness(struct gendisk *disk);
656 +- * void add_hwgenerator_randomness(const char *buffer, size_t count,
657 +- * size_t entropy);
658 +- * void add_bootloader_randomness(const void *buf, unsigned int size);
659 +- *
660 +- * add_device_randomness() is for adding data to the random pool that
661 +- * is likely to differ between two devices (or possibly even per boot).
662 +- * This would be things like MAC addresses or serial numbers, or the
663 +- * read-out of the RTC. This does *not* add any actual entropy to the
664 +- * pool, but it initializes the pool to different values for devices
665 +- * that might otherwise be identical and have very little entropy
666 +- * available to them (particularly common in the embedded world).
667 +- *
668 +- * add_input_randomness() uses the input layer interrupt timing, as well as
669 +- * the event type information from the hardware.
670 +- *
671 +- * add_interrupt_randomness() uses the interrupt timing as random
672 +- * inputs to the entropy pool. Using the cycle counters and the irq source
673 +- * as inputs, it feeds the randomness roughly once a second.
674 +- *
675 +- * add_disk_randomness() uses what amounts to the seek time of block
676 +- * layer request events, on a per-disk_devt basis, as input to the
677 +- * entropy pool. Note that high-speed solid state drives with very low
678 +- * seek times do not make for good sources of entropy, as their seek
679 +- * times are usually fairly consistent.
680 +- *
681 +- * All of these routines try to estimate how many bits of randomness a
682 +- * particular randomness source. They do this by keeping track of the
683 +- * first and second order deltas of the event timings.
684 +- *
685 +- * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
686 +- * entropy as specified by the caller. If the entropy pool is full it will
687 +- * block until more entropy is needed.
688 +- *
689 +- * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
690 +- * add_device_randomness(), depending on whether or not the configuration
691 +- * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
692 +- *
693 +- * Ensuring unpredictability at system startup
694 +- * ============================================
695 +- *
696 +- * When any operating system starts up, it will go through a sequence
697 +- * of actions that are fairly predictable by an adversary, especially
698 +- * if the start-up does not involve interaction with a human operator.
699 +- * This reduces the actual number of bits of unpredictability in the
700 +- * entropy pool below the value in entropy_count. In order to
701 +- * counteract this effect, it helps to carry information in the
702 +- * entropy pool across shut-downs and start-ups. To do this, put the
703 +- * following lines an appropriate script which is run during the boot
704 +- * sequence:
705 +- *
706 +- * echo "Initializing random number generator..."
707 +- * random_seed=/var/run/random-seed
708 +- * # Carry a random seed from start-up to start-up
709 +- * # Load and then save the whole entropy pool
710 +- * if [ -f $random_seed ]; then
711 +- * cat $random_seed >/dev/urandom
712 +- * else
713 +- * touch $random_seed
714 +- * fi
715 +- * chmod 600 $random_seed
716 +- * dd if=/dev/urandom of=$random_seed count=1 bs=512
717 +- *
718 +- * and the following lines in an appropriate script which is run as
719 +- * the system is shutdown:
720 +- *
721 +- * # Carry a random seed from shut-down to start-up
722 +- * # Save the whole entropy pool
723 +- * echo "Saving random seed..."
724 +- * random_seed=/var/run/random-seed
725 +- * touch $random_seed
726 +- * chmod 600 $random_seed
727 +- * dd if=/dev/urandom of=$random_seed count=1 bs=512
728 +- *
729 +- * For example, on most modern systems using the System V init
730 +- * scripts, such code fragments would be found in
731 +- * /etc/rc.d/init.d/random. On older Linux systems, the correct script
732 +- * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
733 +- *
734 +- * Effectively, these commands cause the contents of the entropy pool
735 +- * to be saved at shut-down time and reloaded into the entropy pool at
736 +- * start-up. (The 'dd' in the addition to the bootup script is to
737 +- * make sure that /etc/random-seed is different for every start-up,
738 +- * even if the system crashes without executing rc.0.) Even with
739 +- * complete knowledge of the start-up activities, predicting the state
740 +- * of the entropy pool requires knowledge of the previous history of
741 +- * the system.
742 +- *
743 +- * Configuring the /dev/random driver under Linux
744 +- * ==============================================
745 +- *
746 +- * The /dev/random driver under Linux uses minor numbers 8 and 9 of
747 +- * the /dev/mem major number (#1). So if your system does not have
748 +- * /dev/random and /dev/urandom created already, they can be created
749 +- * by using the commands:
750 +- *
751 +- * mknod /dev/random c 1 8
752 +- * mknod /dev/urandom c 1 9
753 +- *
754 +- * Acknowledgements:
755 +- * =================
756 +- *
757 +- * Ideas for constructing this random number generator were derived
758 +- * from Pretty Good Privacy's random number generator, and from private
759 +- * discussions with Phil Karn. Colin Plumb provided a faster random
760 +- * number generator, which speed up the mixing function of the entropy
761 +- * pool, taken from PGPfone. Dale Worley has also contributed many
762 +- * useful ideas and suggestions to improve this driver.
763 +- *
764 +- * Any flaws in the design are solely my responsibility, and should
765 +- * not be attributed to the Phil, Colin, or any of authors of PGP.
766 +- *
767 +- * Further background information on this topic may be obtained from
768 +- * RFC 1750, "Randomness Recommendations for Security", by Donald
769 +- * Eastlake, Steve Crocker, and Jeff Schiller.
770 ++ * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
771 ++ *
772 ++ * This driver produces cryptographically secure pseudorandom data. It is divided
773 ++ * into roughly six sections, each with a section header:
774 ++ *
775 ++ * - Initialization and readiness waiting.
776 ++ * - Fast key erasure RNG, the "crng".
777 ++ * - Entropy accumulation and extraction routines.
778 ++ * - Entropy collection routines.
779 ++ * - Userspace reader/writer interfaces.
780 ++ * - Sysctl interface.
781 ++ *
782 ++ * The high level overview is that there is one input pool, into which
783 ++ * various pieces of data are hashed. Prior to initialization, some of that
784 ++ * data is then "credited" as having a certain number of bits of entropy.
785 ++ * When enough bits of entropy are available, the hash is finalized and
786 ++ * handed as a key to a stream cipher that expands it indefinitely for
787 ++ * various consumers. This key is periodically refreshed as the various
788 ++ * entropy collectors, described below, add data to the input pool.
789 + */
790 +
791 + #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
792 +@@ -344,1371 +50,1080 @@
793 + #include <linux/syscalls.h>
794 + #include <linux/completion.h>
795 + #include <linux/uuid.h>
796 ++#include <linux/uaccess.h>
797 ++#include <linux/siphash.h>
798 ++#include <linux/uio.h>
799 + #include <crypto/chacha.h>
800 + #include <crypto/blake2s.h>
801 +-
802 + #include <asm/processor.h>
803 +-#include <linux/uaccess.h>
804 + #include <asm/irq.h>
805 + #include <asm/irq_regs.h>
806 + #include <asm/io.h>
807 +
808 +-#define CREATE_TRACE_POINTS
809 +-#include <trace/events/random.h>
810 +-
811 +-/* #define ADD_INTERRUPT_BENCH */
812 +-
813 +-/*
814 +- * If the entropy count falls under this number of bits, then we
815 +- * should wake up processes which are selecting or polling on write
816 +- * access to /dev/random.
817 +- */
818 +-static int random_write_wakeup_bits = 28 * (1 << 5);
819 +-
820 +-/*
821 +- * Originally, we used a primitive polynomial of degree .poolwords
822 +- * over GF(2). The taps for various sizes are defined below. They
823 +- * were chosen to be evenly spaced except for the last tap, which is 1
824 +- * to get the twisting happening as fast as possible.
825 +- *
826 +- * For the purposes of better mixing, we use the CRC-32 polynomial as
827 +- * well to make a (modified) twisted Generalized Feedback Shift
828 +- * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
829 +- * generators. ACM Transactions on Modeling and Computer Simulation
830 +- * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
831 +- * GFSR generators II. ACM Transactions on Modeling and Computer
832 +- * Simulation 4:254-266)
833 ++/*********************************************************************
834 + *
835 +- * Thanks to Colin Plumb for suggesting this.
836 ++ * Initialization and readiness waiting.
837 + *
838 +- * The mixing operation is much less sensitive than the output hash,
839 +- * where we use BLAKE2s. All that we want of mixing operation is that
840 +- * it be a good non-cryptographic hash; i.e. it not produce collisions
841 +- * when fed "random" data of the sort we expect to see. As long as
842 +- * the pool state differs for different inputs, we have preserved the
843 +- * input entropy and done a good job. The fact that an intelligent
844 +- * attacker can construct inputs that will produce controlled
845 +- * alterations to the pool's state is not important because we don't
846 +- * consider such inputs to contribute any randomness. The only
847 +- * property we need with respect to them is that the attacker can't
848 +- * increase his/her knowledge of the pool's state. Since all
849 +- * additions are reversible (knowing the final state and the input,
850 +- * you can reconstruct the initial state), if an attacker has any
851 +- * uncertainty about the initial state, he/she can only shuffle that
852 +- * uncertainty about, but never cause any collisions (which would
853 +- * decrease the uncertainty).
854 ++ * Much of the RNG infrastructure is devoted to various dependencies
855 ++ * being able to wait until the RNG has collected enough entropy and
856 ++ * is ready for safe consumption.
857 + *
858 +- * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
859 +- * Videau in their paper, "The Linux Pseudorandom Number Generator
860 +- * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
861 +- * paper, they point out that we are not using a true Twisted GFSR,
862 +- * since Matsumoto & Kurita used a trinomial feedback polynomial (that
863 +- * is, with only three taps, instead of the six that we are using).
864 +- * As a result, the resulting polynomial is neither primitive nor
865 +- * irreducible, and hence does not have a maximal period over
866 +- * GF(2**32). They suggest a slight change to the generator
867 +- * polynomial which improves the resulting TGFSR polynomial to be
868 +- * irreducible, which we have made here.
869 +- */
870 +-enum poolinfo {
871 +- POOL_WORDS = 128,
872 +- POOL_WORDMASK = POOL_WORDS - 1,
873 +- POOL_BYTES = POOL_WORDS * sizeof(u32),
874 +- POOL_BITS = POOL_BYTES * 8,
875 +- POOL_BITSHIFT = ilog2(POOL_BITS),
876 +-
877 +- /* To allow fractional bits to be tracked, the entropy_count field is
878 +- * denominated in units of 1/8th bits. */
879 +- POOL_ENTROPY_SHIFT = 3,
880 +-#define POOL_ENTROPY_BITS() (input_pool.entropy_count >> POOL_ENTROPY_SHIFT)
881 +- POOL_FRACBITS = POOL_BITS << POOL_ENTROPY_SHIFT,
882 +-
883 +- /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
884 +- POOL_TAP1 = 104,
885 +- POOL_TAP2 = 76,
886 +- POOL_TAP3 = 51,
887 +- POOL_TAP4 = 25,
888 +- POOL_TAP5 = 1,
889 +-
890 +- EXTRACT_SIZE = BLAKE2S_HASH_SIZE / 2
891 +-};
892 ++ *********************************************************************/
893 +
894 + /*
895 +- * Static global variables
896 ++ * crng_init is protected by base_crng->lock, and only increases
897 ++ * its value (from empty->early->ready).
898 + */
899 +-static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
900 ++static enum {
901 ++ CRNG_EMPTY = 0, /* Little to no entropy collected */
902 ++ CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
903 ++ CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
904 ++} crng_init __read_mostly = CRNG_EMPTY;
905 ++static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
906 ++#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
907 ++/* Various types of waiters for crng_init->CRNG_READY transition. */
908 ++static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
909 + static struct fasync_struct *fasync;
910 ++static DEFINE_SPINLOCK(random_ready_chain_lock);
911 ++static RAW_NOTIFIER_HEAD(random_ready_chain);
912 +
913 +-static DEFINE_SPINLOCK(random_ready_list_lock);
914 +-static LIST_HEAD(random_ready_list);
915 +-
916 +-struct crng_state {
917 +- u32 state[16];
918 +- unsigned long init_time;
919 +- spinlock_t lock;
920 +-};
921 +-
922 +-static struct crng_state primary_crng = {
923 +- .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
924 +- .state[0] = CHACHA_CONSTANT_EXPA,
925 +- .state[1] = CHACHA_CONSTANT_ND_3,
926 +- .state[2] = CHACHA_CONSTANT_2_BY,
927 +- .state[3] = CHACHA_CONSTANT_TE_K,
928 +-};
929 +-
930 +-/*
931 +- * crng_init = 0 --> Uninitialized
932 +- * 1 --> Initialized
933 +- * 2 --> Initialized from input_pool
934 +- *
935 +- * crng_init is protected by primary_crng->lock, and only increases
936 +- * its value (from 0->1->2).
937 +- */
938 +-static int crng_init = 0;
939 +-static bool crng_need_final_init = false;
940 +-#define crng_ready() (likely(crng_init > 1))
941 +-static int crng_init_cnt = 0;
942 +-static unsigned long crng_global_init_time = 0;
943 +-#define CRNG_INIT_CNT_THRESH (2 * CHACHA_KEY_SIZE)
944 +-static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE]);
945 +-static void _crng_backtrack_protect(struct crng_state *crng,
946 +- u8 tmp[CHACHA_BLOCK_SIZE], int used);
947 +-static void process_random_ready_list(void);
948 +-static void _get_random_bytes(void *buf, int nbytes);
949 +-
950 +-static struct ratelimit_state unseeded_warning =
951 +- RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
952 ++/* Control how we warn userspace. */
953 + static struct ratelimit_state urandom_warning =
954 + RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
955 +-
956 +-static int ratelimit_disable __read_mostly;
957 +-
958 ++static int ratelimit_disable __read_mostly =
959 ++ IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
960 + module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
961 + MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
962 +
963 +-/**********************************************************************
964 +- *
965 +- * OS independent entropy store. Here are the functions which handle
966 +- * storing entropy in an entropy pool.
967 +- *
968 +- **********************************************************************/
969 +-
970 +-static u32 input_pool_data[POOL_WORDS] __latent_entropy;
971 +-
972 +-static struct {
973 +- spinlock_t lock;
974 +- u16 add_ptr;
975 +- u16 input_rotate;
976 +- int entropy_count;
977 +-} input_pool = {
978 +- .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
979 +-};
980 +-
981 +-static ssize_t extract_entropy(void *buf, size_t nbytes, int min);
982 +-static ssize_t _extract_entropy(void *buf, size_t nbytes);
983 +-
984 +-static void crng_reseed(struct crng_state *crng, bool use_input_pool);
985 +-
986 +-static const u32 twist_table[8] = {
987 +- 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
988 +- 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
989 +-
990 + /*
991 +- * This function adds bytes into the entropy "pool". It does not
992 +- * update the entropy estimate. The caller should call
993 +- * credit_entropy_bits if this is appropriate.
994 ++ * Returns whether or not the input pool has been seeded and thus guaranteed
995 ++ * to supply cryptographically secure random numbers. This applies to: the
996 ++ * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
997 ++ * ,u64,int,long} family of functions.
998 + *
999 +- * The pool is stirred with a primitive polynomial of the appropriate
1000 +- * degree, and then twisted. We twist by three bits at a time because
1001 +- * it's cheap to do so and helps slightly in the expected case where
1002 +- * the entropy is concentrated in the low-order bits.
1003 ++ * Returns: true if the input pool has been seeded.
1004 ++ * false if the input pool has not been seeded.
1005 + */
1006 +-static void _mix_pool_bytes(const void *in, int nbytes)
1007 +-{
1008 +- unsigned long i;
1009 +- int input_rotate;
1010 +- const u8 *bytes = in;
1011 +- u32 w;
1012 +-
1013 +- input_rotate = input_pool.input_rotate;
1014 +- i = input_pool.add_ptr;
1015 +-
1016 +- /* mix one byte at a time to simplify size handling and churn faster */
1017 +- while (nbytes--) {
1018 +- w = rol32(*bytes++, input_rotate);
1019 +- i = (i - 1) & POOL_WORDMASK;
1020 +-
1021 +- /* XOR in the various taps */
1022 +- w ^= input_pool_data[i];
1023 +- w ^= input_pool_data[(i + POOL_TAP1) & POOL_WORDMASK];
1024 +- w ^= input_pool_data[(i + POOL_TAP2) & POOL_WORDMASK];
1025 +- w ^= input_pool_data[(i + POOL_TAP3) & POOL_WORDMASK];
1026 +- w ^= input_pool_data[(i + POOL_TAP4) & POOL_WORDMASK];
1027 +- w ^= input_pool_data[(i + POOL_TAP5) & POOL_WORDMASK];
1028 +-
1029 +- /* Mix the result back in with a twist */
1030 +- input_pool_data[i] = (w >> 3) ^ twist_table[w & 7];
1031 +-
1032 +- /*
1033 +- * Normally, we add 7 bits of rotation to the pool.
1034 +- * At the beginning of the pool, add an extra 7 bits
1035 +- * rotation, so that successive passes spread the
1036 +- * input bits across the pool evenly.
1037 +- */
1038 +- input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
1039 +- }
1040 +-
1041 +- input_pool.input_rotate = input_rotate;
1042 +- input_pool.add_ptr = i;
1043 +-}
1044 +-
1045 +-static void __mix_pool_bytes(const void *in, int nbytes)
1046 ++bool rng_is_initialized(void)
1047 + {
1048 +- trace_mix_pool_bytes_nolock(nbytes, _RET_IP_);
1049 +- _mix_pool_bytes(in, nbytes);
1050 ++ return crng_ready();
1051 + }
1052 ++EXPORT_SYMBOL(rng_is_initialized);
1053 +
1054 +-static void mix_pool_bytes(const void *in, int nbytes)
1055 ++static void __cold crng_set_ready(struct work_struct *work)
1056 + {
1057 +- unsigned long flags;
1058 +-
1059 +- trace_mix_pool_bytes(nbytes, _RET_IP_);
1060 +- spin_lock_irqsave(&input_pool.lock, flags);
1061 +- _mix_pool_bytes(in, nbytes);
1062 +- spin_unlock_irqrestore(&input_pool.lock, flags);
1063 ++ static_branch_enable(&crng_is_ready);
1064 + }
1065 +
1066 +-struct fast_pool {
1067 +- u32 pool[4];
1068 +- unsigned long last;
1069 +- u16 reg_idx;
1070 +- u8 count;
1071 +-};
1072 ++/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
1073 ++static void try_to_generate_entropy(void);
1074 +
1075 + /*
1076 +- * This is a fast mixing routine used by the interrupt randomness
1077 +- * collector. It's hardcoded for an 128 bit pool and assumes that any
1078 +- * locks that might be needed are taken by the caller.
1079 ++ * Wait for the input pool to be seeded and thus guaranteed to supply
1080 ++ * cryptographically secure random numbers. This applies to: the /dev/urandom
1081 ++ * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1082 ++ * family of functions. Using any of these functions without first calling
1083 ++ * this function forfeits the guarantee of security.
1084 ++ *
1085 ++ * Returns: 0 if the input pool has been seeded.
1086 ++ * -ERESTARTSYS if the function was interrupted by a signal.
1087 + */
1088 +-static void fast_mix(struct fast_pool *f)
1089 ++int wait_for_random_bytes(void)
1090 + {
1091 +- u32 a = f->pool[0], b = f->pool[1];
1092 +- u32 c = f->pool[2], d = f->pool[3];
1093 +-
1094 +- a += b; c += d;
1095 +- b = rol32(b, 6); d = rol32(d, 27);
1096 +- d ^= a; b ^= c;
1097 +-
1098 +- a += b; c += d;
1099 +- b = rol32(b, 16); d = rol32(d, 14);
1100 +- d ^= a; b ^= c;
1101 +-
1102 +- a += b; c += d;
1103 +- b = rol32(b, 6); d = rol32(d, 27);
1104 +- d ^= a; b ^= c;
1105 +-
1106 +- a += b; c += d;
1107 +- b = rol32(b, 16); d = rol32(d, 14);
1108 +- d ^= a; b ^= c;
1109 ++ while (!crng_ready()) {
1110 ++ int ret;
1111 +
1112 +- f->pool[0] = a; f->pool[1] = b;
1113 +- f->pool[2] = c; f->pool[3] = d;
1114 +- f->count++;
1115 ++ try_to_generate_entropy();
1116 ++ ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1117 ++ if (ret)
1118 ++ return ret > 0 ? 0 : ret;
1119 ++ }
1120 ++ return 0;
1121 + }
1122 ++EXPORT_SYMBOL(wait_for_random_bytes);
1123 +
1124 +-static void process_random_ready_list(void)
1125 ++/*
1126 ++ * Add a callback function that will be invoked when the input
1127 ++ * pool is initialised.
1128 ++ *
1129 ++ * returns: 0 if callback is successfully added
1130 ++ * -EALREADY if pool is already initialised (callback not called)
1131 ++ */
1132 ++int __cold register_random_ready_notifier(struct notifier_block *nb)
1133 + {
1134 + unsigned long flags;
1135 +- struct random_ready_callback *rdy, *tmp;
1136 ++ int ret = -EALREADY;
1137 +
1138 +- spin_lock_irqsave(&random_ready_list_lock, flags);
1139 +- list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
1140 +- struct module *owner = rdy->owner;
1141 ++ if (crng_ready())
1142 ++ return ret;
1143 +
1144 +- list_del_init(&rdy->list);
1145 +- rdy->func(rdy);
1146 +- module_put(owner);
1147 +- }
1148 +- spin_unlock_irqrestore(&random_ready_list_lock, flags);
1149 ++ spin_lock_irqsave(&random_ready_chain_lock, flags);
1150 ++ if (!crng_ready())
1151 ++ ret = raw_notifier_chain_register(&random_ready_chain, nb);
1152 ++ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
1153 ++ return ret;
1154 + }
1155 +
1156 + /*
1157 +- * Credit (or debit) the entropy store with n bits of entropy.
1158 +- * Use credit_entropy_bits_safe() if the value comes from userspace
1159 +- * or otherwise should be checked for extreme values.
1160 ++ * Delete a previously registered readiness callback function.
1161 + */
1162 +-static void credit_entropy_bits(int nbits)
1163 ++int __cold unregister_random_ready_notifier(struct notifier_block *nb)
1164 + {
1165 +- int entropy_count, entropy_bits, orig;
1166 +- int nfrac = nbits << POOL_ENTROPY_SHIFT;
1167 +-
1168 +- /* Ensure that the multiplication can avoid being 64 bits wide. */
1169 +- BUILD_BUG_ON(2 * (POOL_ENTROPY_SHIFT + POOL_BITSHIFT) > 31);
1170 +-
1171 +- if (!nbits)
1172 +- return;
1173 +-
1174 +-retry:
1175 +- entropy_count = orig = READ_ONCE(input_pool.entropy_count);
1176 +- if (nfrac < 0) {
1177 +- /* Debit */
1178 +- entropy_count += nfrac;
1179 +- } else {
1180 +- /*
1181 +- * Credit: we have to account for the possibility of
1182 +- * overwriting already present entropy. Even in the
1183 +- * ideal case of pure Shannon entropy, new contributions
1184 +- * approach the full value asymptotically:
1185 +- *
1186 +- * entropy <- entropy + (pool_size - entropy) *
1187 +- * (1 - exp(-add_entropy/pool_size))
1188 +- *
1189 +- * For add_entropy <= pool_size/2 then
1190 +- * (1 - exp(-add_entropy/pool_size)) >=
1191 +- * (add_entropy/pool_size)*0.7869...
1192 +- * so we can approximate the exponential with
1193 +- * 3/4*add_entropy/pool_size and still be on the
1194 +- * safe side by adding at most pool_size/2 at a time.
1195 +- *
1196 +- * The use of pool_size-2 in the while statement is to
1197 +- * prevent rounding artifacts from making the loop
1198 +- * arbitrarily long; this limits the loop to log2(pool_size)*2
1199 +- * turns no matter how large nbits is.
1200 +- */
1201 +- int pnfrac = nfrac;
1202 +- const int s = POOL_BITSHIFT + POOL_ENTROPY_SHIFT + 2;
1203 +- /* The +2 corresponds to the /4 in the denominator */
1204 +-
1205 +- do {
1206 +- unsigned int anfrac = min(pnfrac, POOL_FRACBITS / 2);
1207 +- unsigned int add =
1208 +- ((POOL_FRACBITS - entropy_count) * anfrac * 3) >> s;
1209 +-
1210 +- entropy_count += add;
1211 +- pnfrac -= anfrac;
1212 +- } while (unlikely(entropy_count < POOL_FRACBITS - 2 && pnfrac));
1213 +- }
1214 +-
1215 +- if (WARN_ON(entropy_count < 0)) {
1216 +- pr_warn("negative entropy/overflow: count %d\n", entropy_count);
1217 +- entropy_count = 0;
1218 +- } else if (entropy_count > POOL_FRACBITS)
1219 +- entropy_count = POOL_FRACBITS;
1220 +- if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
1221 +- goto retry;
1222 +-
1223 +- trace_credit_entropy_bits(nbits, entropy_count >> POOL_ENTROPY_SHIFT, _RET_IP_);
1224 ++ unsigned long flags;
1225 ++ int ret;
1226 +
1227 +- entropy_bits = entropy_count >> POOL_ENTROPY_SHIFT;
1228 +- if (crng_init < 2 && entropy_bits >= 128)
1229 +- crng_reseed(&primary_crng, true);
1230 ++ spin_lock_irqsave(&random_ready_chain_lock, flags);
1231 ++ ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
1232 ++ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
1233 ++ return ret;
1234 + }
1235 +
1236 +-static int credit_entropy_bits_safe(int nbits)
1237 ++static void __cold process_random_ready_list(void)
1238 + {
1239 +- if (nbits < 0)
1240 +- return -EINVAL;
1241 +-
1242 +- /* Cap the value to avoid overflows */
1243 +- nbits = min(nbits, POOL_BITS);
1244 ++ unsigned long flags;
1245 +
1246 +- credit_entropy_bits(nbits);
1247 +- return 0;
1248 ++ spin_lock_irqsave(&random_ready_chain_lock, flags);
1249 ++ raw_notifier_call_chain(&random_ready_chain, 0, NULL);
1250 ++ spin_unlock_irqrestore(&random_ready_chain_lock, flags);
1251 + }
1252 +
1253 ++#define warn_unseeded_randomness() \
1254 ++ if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
1255 ++ printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
1256 ++ __func__, (void *)_RET_IP_, crng_init)
1257 ++
1258 ++
1259 + /*********************************************************************
1260 + *
1261 +- * CRNG using CHACHA20
1262 ++ * Fast key erasure RNG, the "crng".
1263 ++ *
1264 ++ * These functions expand entropy from the entropy extractor into
1265 ++ * long streams for external consumption using the "fast key erasure"
1266 ++ * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
1267 ++ *
1268 ++ * There are a few exported interfaces for use by other drivers:
1269 ++ *
1270 ++ * void get_random_bytes(void *buf, size_t len)
1271 ++ * u32 get_random_u32()
1272 ++ * u64 get_random_u64()
1273 ++ * unsigned int get_random_int()
1274 ++ * unsigned long get_random_long()
1275 ++ *
1276 ++ * These interfaces will return the requested number of random bytes
1277 ++ * into the given buffer or as a return value. This is equivalent to
1278 ++ * a read from /dev/urandom. The u32, u64, int, and long family of
1279 ++ * functions may be higher performance for one-off random integers,
1280 ++ * because they do a bit of buffering and do not invoke reseeding
1281 ++ * until the buffer is emptied.
1282 + *
1283 + *********************************************************************/
1284 +
1285 +-#define CRNG_RESEED_INTERVAL (300 * HZ)
1286 ++enum {
1287 ++ CRNG_RESEED_START_INTERVAL = HZ,
1288 ++ CRNG_RESEED_INTERVAL = 60 * HZ
1289 ++};
1290 +
1291 +-static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
1292 ++static struct {
1293 ++ u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
1294 ++ unsigned long birth;
1295 ++ unsigned long generation;
1296 ++ spinlock_t lock;
1297 ++} base_crng = {
1298 ++ .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
1299 ++};
1300 +
1301 +-/*
1302 +- * Hack to deal with crazy userspace progams when they are all trying
1303 +- * to access /dev/urandom in parallel. The programs are almost
1304 +- * certainly doing something terribly wrong, but we'll work around
1305 +- * their brain damage.
1306 +- */
1307 +-static struct crng_state **crng_node_pool __read_mostly;
1308 ++struct crng {
1309 ++ u8 key[CHACHA_KEY_SIZE];
1310 ++ unsigned long generation;
1311 ++ local_lock_t lock;
1312 ++};
1313 +
1314 +-static void invalidate_batched_entropy(void);
1315 +-static void numa_crng_init(void);
1316 ++static DEFINE_PER_CPU(struct crng, crngs) = {
1317 ++ .generation = ULONG_MAX,
1318 ++ .lock = INIT_LOCAL_LOCK(crngs.lock),
1319 ++};
1320 +
1321 +-static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
1322 +-static int __init parse_trust_cpu(char *arg)
1323 +-{
1324 +- return kstrtobool(arg, &trust_cpu);
1325 +-}
1326 +-early_param("random.trust_cpu", parse_trust_cpu);
1327 ++/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
1328 ++static void extract_entropy(void *buf, size_t len);
1329 +
1330 +-static bool crng_init_try_arch(struct crng_state *crng)
1331 ++/* This extracts a new crng key from the input pool. */
1332 ++static void crng_reseed(void)
1333 + {
1334 +- int i;
1335 +- bool arch_init = true;
1336 +- unsigned long rv;
1337 +-
1338 +- for (i = 4; i < 16; i++) {
1339 +- if (!arch_get_random_seed_long(&rv) &&
1340 +- !arch_get_random_long(&rv)) {
1341 +- rv = random_get_entropy();
1342 +- arch_init = false;
1343 +- }
1344 +- crng->state[i] ^= rv;
1345 +- }
1346 ++ unsigned long flags;
1347 ++ unsigned long next_gen;
1348 ++ u8 key[CHACHA_KEY_SIZE];
1349 +
1350 +- return arch_init;
1351 ++ extract_entropy(key, sizeof(key));
1352 ++
1353 ++ /*
1354 ++ * We copy the new key into the base_crng, overwriting the old one,
1355 ++ * and update the generation counter. We avoid hitting ULONG_MAX,
1356 ++ * because the per-cpu crngs are initialized to ULONG_MAX, so this
1357 ++ * forces new CPUs that come online to always initialize.
1358 ++ */
1359 ++ spin_lock_irqsave(&base_crng.lock, flags);
1360 ++ memcpy(base_crng.key, key, sizeof(base_crng.key));
1361 ++ next_gen = base_crng.generation + 1;
1362 ++ if (next_gen == ULONG_MAX)
1363 ++ ++next_gen;
1364 ++ WRITE_ONCE(base_crng.generation, next_gen);
1365 ++ WRITE_ONCE(base_crng.birth, jiffies);
1366 ++ if (!static_branch_likely(&crng_is_ready))
1367 ++ crng_init = CRNG_READY;
1368 ++ spin_unlock_irqrestore(&base_crng.lock, flags);
1369 ++ memzero_explicit(key, sizeof(key));
1370 + }
1371 +
1372 +-static bool __init crng_init_try_arch_early(void)
1373 ++/*
1374 ++ * This generates a ChaCha block using the provided key, and then
1375 ++ * immediately overwites that key with half the block. It returns
1376 ++ * the resultant ChaCha state to the user, along with the second
1377 ++ * half of the block containing 32 bytes of random data that may
1378 ++ * be used; random_data_len may not be greater than 32.
1379 ++ *
1380 ++ * The returned ChaCha state contains within it a copy of the old
1381 ++ * key value, at index 4, so the state should always be zeroed out
1382 ++ * immediately after using in order to maintain forward secrecy.
1383 ++ * If the state cannot be erased in a timely manner, then it is
1384 ++ * safer to set the random_data parameter to &chacha_state[4] so
1385 ++ * that this function overwrites it before returning.
1386 ++ */
1387 ++static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
1388 ++ u32 chacha_state[CHACHA_STATE_WORDS],
1389 ++ u8 *random_data, size_t random_data_len)
1390 + {
1391 +- int i;
1392 +- bool arch_init = true;
1393 +- unsigned long rv;
1394 +-
1395 +- for (i = 4; i < 16; i++) {
1396 +- if (!arch_get_random_seed_long_early(&rv) &&
1397 +- !arch_get_random_long_early(&rv)) {
1398 +- rv = random_get_entropy();
1399 +- arch_init = false;
1400 +- }
1401 +- primary_crng.state[i] ^= rv;
1402 +- }
1403 ++ u8 first_block[CHACHA_BLOCK_SIZE];
1404 +
1405 +- return arch_init;
1406 +-}
1407 ++ BUG_ON(random_data_len > 32);
1408 +
1409 +-static void crng_initialize_secondary(struct crng_state *crng)
1410 +-{
1411 +- chacha_init_consts(crng->state);
1412 +- _get_random_bytes(&crng->state[4], sizeof(u32) * 12);
1413 +- crng_init_try_arch(crng);
1414 +- crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
1415 ++ chacha_init_consts(chacha_state);
1416 ++ memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
1417 ++ memset(&chacha_state[12], 0, sizeof(u32) * 4);
1418 ++ chacha20_block(chacha_state, first_block);
1419 ++
1420 ++ memcpy(key, first_block, CHACHA_KEY_SIZE);
1421 ++ memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
1422 ++ memzero_explicit(first_block, sizeof(first_block));
1423 + }
1424 +
1425 +-static void __init crng_initialize_primary(void)
1426 +-{
1427 +- _extract_entropy(&primary_crng.state[4], sizeof(u32) * 12);
1428 +- if (crng_init_try_arch_early() && trust_cpu && crng_init < 2) {
1429 +- invalidate_batched_entropy();
1430 +- numa_crng_init();
1431 +- crng_init = 2;
1432 +- pr_notice("crng init done (trusting CPU's manufacturer)\n");
1433 ++/*
1434 ++ * Return whether the crng seed is considered to be sufficiently old
1435 ++ * that a reseeding is needed. This happens if the last reseeding
1436 ++ * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
1437 ++ * proportional to the uptime.
1438 ++ */
1439 ++static bool crng_has_old_seed(void)
1440 ++{
1441 ++ static bool early_boot = true;
1442 ++ unsigned long interval = CRNG_RESEED_INTERVAL;
1443 ++
1444 ++ if (unlikely(READ_ONCE(early_boot))) {
1445 ++ time64_t uptime = ktime_get_seconds();
1446 ++ if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
1447 ++ WRITE_ONCE(early_boot, false);
1448 ++ else
1449 ++ interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
1450 ++ (unsigned int)uptime / 2 * HZ);
1451 + }
1452 +- primary_crng.init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
1453 ++ return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
1454 + }
1455 +
1456 +-static void crng_finalize_init(void)
1457 ++/*
1458 ++ * This function returns a ChaCha state that you may use for generating
1459 ++ * random data. It also returns up to 32 bytes on its own of random data
1460 ++ * that may be used; random_data_len may not be greater than 32.
1461 ++ */
1462 ++static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
1463 ++ u8 *random_data, size_t random_data_len)
1464 + {
1465 +- if (!system_wq) {
1466 +- /* We can't call numa_crng_init until we have workqueues,
1467 +- * so mark this for processing later. */
1468 +- crng_need_final_init = true;
1469 +- return;
1470 +- }
1471 ++ unsigned long flags;
1472 ++ struct crng *crng;
1473 +
1474 +- invalidate_batched_entropy();
1475 +- numa_crng_init();
1476 +- crng_init = 2;
1477 +- crng_need_final_init = false;
1478 +- process_random_ready_list();
1479 +- wake_up_interruptible(&crng_init_wait);
1480 +- kill_fasync(&fasync, SIGIO, POLL_IN);
1481 +- pr_notice("crng init done\n");
1482 +- if (unseeded_warning.missed) {
1483 +- pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
1484 +- unseeded_warning.missed);
1485 +- unseeded_warning.missed = 0;
1486 ++ BUG_ON(random_data_len > 32);
1487 ++
1488 ++ /*
1489 ++ * For the fast path, we check whether we're ready, unlocked first, and
1490 ++ * then re-check once locked later. In the case where we're really not
1491 ++ * ready, we do fast key erasure with the base_crng directly, extracting
1492 ++ * when crng_init is CRNG_EMPTY.
1493 ++ */
1494 ++ if (!crng_ready()) {
1495 ++ bool ready;
1496 ++
1497 ++ spin_lock_irqsave(&base_crng.lock, flags);
1498 ++ ready = crng_ready();
1499 ++ if (!ready) {
1500 ++ if (crng_init == CRNG_EMPTY)
1501 ++ extract_entropy(base_crng.key, sizeof(base_crng.key));
1502 ++ crng_fast_key_erasure(base_crng.key, chacha_state,
1503 ++ random_data, random_data_len);
1504 ++ }
1505 ++ spin_unlock_irqrestore(&base_crng.lock, flags);
1506 ++ if (!ready)
1507 ++ return;
1508 + }
1509 +- if (urandom_warning.missed) {
1510 +- pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
1511 +- urandom_warning.missed);
1512 +- urandom_warning.missed = 0;
1513 ++
1514 ++ /*
1515 ++ * If the base_crng is old enough, we reseed, which in turn bumps the
1516 ++ * generation counter that we check below.
1517 ++ */
1518 ++ if (unlikely(crng_has_old_seed()))
1519 ++ crng_reseed();
1520 ++
1521 ++ local_lock_irqsave(&crngs.lock, flags);
1522 ++ crng = raw_cpu_ptr(&crngs);
1523 ++
1524 ++ /*
1525 ++ * If our per-cpu crng is older than the base_crng, then it means
1526 ++ * somebody reseeded the base_crng. In that case, we do fast key
1527 ++ * erasure on the base_crng, and use its output as the new key
1528 ++ * for our per-cpu crng. This brings us up to date with base_crng.
1529 ++ */
1530 ++ if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
1531 ++ spin_lock(&base_crng.lock);
1532 ++ crng_fast_key_erasure(base_crng.key, chacha_state,
1533 ++ crng->key, sizeof(crng->key));
1534 ++ crng->generation = base_crng.generation;
1535 ++ spin_unlock(&base_crng.lock);
1536 + }
1537 ++
1538 ++ /*
1539 ++ * Finally, when we've made it this far, our per-cpu crng has an up
1540 ++ * to date key, and we can do fast key erasure with it to produce
1541 ++ * some random data and a ChaCha state for the caller. All other
1542 ++ * branches of this function are "unlikely", so most of the time we
1543 ++ * should wind up here immediately.
1544 ++ */
1545 ++ crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
1546 ++ local_unlock_irqrestore(&crngs.lock, flags);
1547 + }
1548 +
1549 +-static void do_numa_crng_init(struct work_struct *work)
1550 ++static void _get_random_bytes(void *buf, size_t len)
1551 + {
1552 +- int i;
1553 +- struct crng_state *crng;
1554 +- struct crng_state **pool;
1555 +-
1556 +- pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL | __GFP_NOFAIL);
1557 +- for_each_online_node(i) {
1558 +- crng = kmalloc_node(sizeof(struct crng_state),
1559 +- GFP_KERNEL | __GFP_NOFAIL, i);
1560 +- spin_lock_init(&crng->lock);
1561 +- crng_initialize_secondary(crng);
1562 +- pool[i] = crng;
1563 +- }
1564 +- /* pairs with READ_ONCE() in select_crng() */
1565 +- if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
1566 +- for_each_node(i)
1567 +- kfree(pool[i]);
1568 +- kfree(pool);
1569 +- }
1570 +-}
1571 ++ u32 chacha_state[CHACHA_STATE_WORDS];
1572 ++ u8 tmp[CHACHA_BLOCK_SIZE];
1573 ++ size_t first_block_len;
1574 +
1575 +-static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
1576 ++ if (!len)
1577 ++ return;
1578 +
1579 +-static void numa_crng_init(void)
1580 +-{
1581 +- if (IS_ENABLED(CONFIG_NUMA))
1582 +- schedule_work(&numa_crng_init_work);
1583 +-}
1584 ++ first_block_len = min_t(size_t, 32, len);
1585 ++ crng_make_state(chacha_state, buf, first_block_len);
1586 ++ len -= first_block_len;
1587 ++ buf += first_block_len;
1588 +
1589 +-static struct crng_state *select_crng(void)
1590 +-{
1591 +- if (IS_ENABLED(CONFIG_NUMA)) {
1592 +- struct crng_state **pool;
1593 +- int nid = numa_node_id();
1594 +-
1595 +- /* pairs with cmpxchg_release() in do_numa_crng_init() */
1596 +- pool = READ_ONCE(crng_node_pool);
1597 +- if (pool && pool[nid])
1598 +- return pool[nid];
1599 ++ while (len) {
1600 ++ if (len < CHACHA_BLOCK_SIZE) {
1601 ++ chacha20_block(chacha_state, tmp);
1602 ++ memcpy(buf, tmp, len);
1603 ++ memzero_explicit(tmp, sizeof(tmp));
1604 ++ break;
1605 ++ }
1606 ++
1607 ++ chacha20_block(chacha_state, buf);
1608 ++ if (unlikely(chacha_state[12] == 0))
1609 ++ ++chacha_state[13];
1610 ++ len -= CHACHA_BLOCK_SIZE;
1611 ++ buf += CHACHA_BLOCK_SIZE;
1612 + }
1613 +
1614 +- return &primary_crng;
1615 ++ memzero_explicit(chacha_state, sizeof(chacha_state));
1616 + }
1617 +
1618 + /*
1619 +- * crng_fast_load() can be called by code in the interrupt service
1620 +- * path. So we can't afford to dilly-dally. Returns the number of
1621 +- * bytes processed from cp.
1622 ++ * This function is the exported kernel interface. It returns some
1623 ++ * number of good random numbers, suitable for key generation, seeding
1624 ++ * TCP sequence numbers, etc. It does not rely on the hardware random
1625 ++ * number generator. For random bytes direct from the hardware RNG
1626 ++ * (when available), use get_random_bytes_arch(). In order to ensure
1627 ++ * that the randomness provided by this function is okay, the function
1628 ++ * wait_for_random_bytes() should be called and return 0 at least once
1629 ++ * at any point prior.
1630 + */
1631 +-static size_t crng_fast_load(const u8 *cp, size_t len)
1632 ++void get_random_bytes(void *buf, size_t len)
1633 + {
1634 +- unsigned long flags;
1635 +- u8 *p;
1636 +- size_t ret = 0;
1637 +-
1638 +- if (!spin_trylock_irqsave(&primary_crng.lock, flags))
1639 +- return 0;
1640 +- if (crng_init != 0) {
1641 +- spin_unlock_irqrestore(&primary_crng.lock, flags);
1642 +- return 0;
1643 +- }
1644 +- p = (u8 *)&primary_crng.state[4];
1645 +- while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
1646 +- p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
1647 +- cp++; crng_init_cnt++; len--; ret++;
1648 +- }
1649 +- spin_unlock_irqrestore(&primary_crng.lock, flags);
1650 +- if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
1651 +- invalidate_batched_entropy();
1652 +- crng_init = 1;
1653 +- pr_notice("fast init done\n");
1654 +- }
1655 +- return ret;
1656 ++ warn_unseeded_randomness();
1657 ++ _get_random_bytes(buf, len);
1658 + }
1659 ++EXPORT_SYMBOL(get_random_bytes);
1660 +
1661 +-/*
1662 +- * crng_slow_load() is called by add_device_randomness, which has two
1663 +- * attributes. (1) We can't trust the buffer passed to it is
1664 +- * guaranteed to be unpredictable (so it might not have any entropy at
1665 +- * all), and (2) it doesn't have the performance constraints of
1666 +- * crng_fast_load().
1667 +- *
1668 +- * So we do something more comprehensive which is guaranteed to touch
1669 +- * all of the primary_crng's state, and which uses a LFSR with a
1670 +- * period of 255 as part of the mixing algorithm. Finally, we do
1671 +- * *not* advance crng_init_cnt since buffer we may get may be something
1672 +- * like a fixed DMI table (for example), which might very well be
1673 +- * unique to the machine, but is otherwise unvarying.
1674 +- */
1675 +-static int crng_slow_load(const u8 *cp, size_t len)
1676 ++static ssize_t get_random_bytes_user(struct iov_iter *iter)
1677 + {
1678 +- unsigned long flags;
1679 +- static u8 lfsr = 1;
1680 +- u8 tmp;
1681 +- unsigned int i, max = CHACHA_KEY_SIZE;
1682 +- const u8 *src_buf = cp;
1683 +- u8 *dest_buf = (u8 *)&primary_crng.state[4];
1684 ++ u32 chacha_state[CHACHA_STATE_WORDS];
1685 ++ u8 block[CHACHA_BLOCK_SIZE];
1686 ++ size_t ret = 0, copied;
1687 +
1688 +- if (!spin_trylock_irqsave(&primary_crng.lock, flags))
1689 +- return 0;
1690 +- if (crng_init != 0) {
1691 +- spin_unlock_irqrestore(&primary_crng.lock, flags);
1692 ++ if (unlikely(!iov_iter_count(iter)))
1693 + return 0;
1694 +- }
1695 +- if (len > max)
1696 +- max = len;
1697 +-
1698 +- for (i = 0; i < max; i++) {
1699 +- tmp = lfsr;
1700 +- lfsr >>= 1;
1701 +- if (tmp & 1)
1702 +- lfsr ^= 0xE1;
1703 +- tmp = dest_buf[i % CHACHA_KEY_SIZE];
1704 +- dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
1705 +- lfsr += (tmp << 3) | (tmp >> 5);
1706 +- }
1707 +- spin_unlock_irqrestore(&primary_crng.lock, flags);
1708 +- return 1;
1709 +-}
1710 +
1711 +-static void crng_reseed(struct crng_state *crng, bool use_input_pool)
1712 +-{
1713 +- unsigned long flags;
1714 +- int i, num;
1715 +- union {
1716 +- u8 block[CHACHA_BLOCK_SIZE];
1717 +- u32 key[8];
1718 +- } buf;
1719 +-
1720 +- if (use_input_pool) {
1721 +- num = extract_entropy(&buf, 32, 16);
1722 +- if (num == 0)
1723 +- return;
1724 +- } else {
1725 +- _extract_crng(&primary_crng, buf.block);
1726 +- _crng_backtrack_protect(&primary_crng, buf.block,
1727 +- CHACHA_KEY_SIZE);
1728 +- }
1729 +- spin_lock_irqsave(&crng->lock, flags);
1730 +- for (i = 0; i < 8; i++) {
1731 +- unsigned long rv;
1732 +- if (!arch_get_random_seed_long(&rv) &&
1733 +- !arch_get_random_long(&rv))
1734 +- rv = random_get_entropy();
1735 +- crng->state[i + 4] ^= buf.key[i] ^ rv;
1736 ++ /*
1737 ++ * Immediately overwrite the ChaCha key at index 4 with random
1738 ++ * bytes, in case userspace causes copy_to_user() below to sleep
1739 ++ * forever, so that we still retain forward secrecy in that case.
1740 ++ */
1741 ++ crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
1742 ++ /*
1743 ++ * However, if we're doing a read of len <= 32, we don't need to
1744 ++ * use chacha_state after, so we can simply return those bytes to
1745 ++ * the user directly.
1746 ++ */
1747 ++ if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
1748 ++ ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
1749 ++ goto out_zero_chacha;
1750 + }
1751 +- memzero_explicit(&buf, sizeof(buf));
1752 +- WRITE_ONCE(crng->init_time, jiffies);
1753 +- spin_unlock_irqrestore(&crng->lock, flags);
1754 +- if (crng == &primary_crng && crng_init < 2)
1755 +- crng_finalize_init();
1756 +-}
1757 +
1758 +-static void _extract_crng(struct crng_state *crng, u8 out[CHACHA_BLOCK_SIZE])
1759 +-{
1760 +- unsigned long flags, init_time;
1761 ++ for (;;) {
1762 ++ chacha20_block(chacha_state, block);
1763 ++ if (unlikely(chacha_state[12] == 0))
1764 ++ ++chacha_state[13];
1765 ++
1766 ++ copied = copy_to_iter(block, sizeof(block), iter);
1767 ++ ret += copied;
1768 ++ if (!iov_iter_count(iter) || copied != sizeof(block))
1769 ++ break;
1770 +
1771 +- if (crng_ready()) {
1772 +- init_time = READ_ONCE(crng->init_time);
1773 +- if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
1774 +- time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
1775 +- crng_reseed(crng, crng == &primary_crng);
1776 ++ BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1777 ++ if (ret % PAGE_SIZE == 0) {
1778 ++ if (signal_pending(current))
1779 ++ break;
1780 ++ cond_resched();
1781 ++ }
1782 + }
1783 +- spin_lock_irqsave(&crng->lock, flags);
1784 +- chacha20_block(&crng->state[0], out);
1785 +- if (crng->state[12] == 0)
1786 +- crng->state[13]++;
1787 +- spin_unlock_irqrestore(&crng->lock, flags);
1788 +-}
1789 +
1790 +-static void extract_crng(u8 out[CHACHA_BLOCK_SIZE])
1791 +-{
1792 +- _extract_crng(select_crng(), out);
1793 ++ memzero_explicit(block, sizeof(block));
1794 ++out_zero_chacha:
1795 ++ memzero_explicit(chacha_state, sizeof(chacha_state));
1796 ++ return ret ? ret : -EFAULT;
1797 + }
1798 +
1799 + /*
1800 +- * Use the leftover bytes from the CRNG block output (if there is
1801 +- * enough) to mutate the CRNG key to provide backtracking protection.
1802 ++ * Batched entropy returns random integers. The quality of the random
1803 ++ * number is good as /dev/urandom. In order to ensure that the randomness
1804 ++ * provided by this function is okay, the function wait_for_random_bytes()
1805 ++ * should be called and return 0 at least once at any point prior.
1806 + */
1807 +-static void _crng_backtrack_protect(struct crng_state *crng,
1808 +- u8 tmp[CHACHA_BLOCK_SIZE], int used)
1809 +-{
1810 +- unsigned long flags;
1811 +- u32 *s, *d;
1812 +- int i;
1813 +
1814 +- used = round_up(used, sizeof(u32));
1815 +- if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1816 +- extract_crng(tmp);
1817 +- used = 0;
1818 +- }
1819 +- spin_lock_irqsave(&crng->lock, flags);
1820 +- s = (u32 *)&tmp[used];
1821 +- d = &crng->state[4];
1822 +- for (i = 0; i < 8; i++)
1823 +- *d++ ^= *s++;
1824 +- spin_unlock_irqrestore(&crng->lock, flags);
1825 +-}
1826 +-
1827 +-static void crng_backtrack_protect(u8 tmp[CHACHA_BLOCK_SIZE], int used)
1828 ++#define DEFINE_BATCHED_ENTROPY(type) \
1829 ++struct batch_ ##type { \
1830 ++ /* \
1831 ++ * We make this 1.5x a ChaCha block, so that we get the \
1832 ++ * remaining 32 bytes from fast key erasure, plus one full \
1833 ++ * block from the detached ChaCha state. We can increase \
1834 ++ * the size of this later if needed so long as we keep the \
1835 ++ * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE. \
1836 ++ */ \
1837 ++ type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
1838 ++ local_lock_t lock; \
1839 ++ unsigned long generation; \
1840 ++ unsigned int position; \
1841 ++}; \
1842 ++ \
1843 ++static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
1844 ++ .lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock), \
1845 ++ .position = UINT_MAX \
1846 ++}; \
1847 ++ \
1848 ++type get_random_ ##type(void) \
1849 ++{ \
1850 ++ type ret; \
1851 ++ unsigned long flags; \
1852 ++ struct batch_ ##type *batch; \
1853 ++ unsigned long next_gen; \
1854 ++ \
1855 ++ warn_unseeded_randomness(); \
1856 ++ \
1857 ++ if (!crng_ready()) { \
1858 ++ _get_random_bytes(&ret, sizeof(ret)); \
1859 ++ return ret; \
1860 ++ } \
1861 ++ \
1862 ++ local_lock_irqsave(&batched_entropy_ ##type.lock, flags); \
1863 ++ batch = raw_cpu_ptr(&batched_entropy_##type); \
1864 ++ \
1865 ++ next_gen = READ_ONCE(base_crng.generation); \
1866 ++ if (batch->position >= ARRAY_SIZE(batch->entropy) || \
1867 ++ next_gen != batch->generation) { \
1868 ++ _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
1869 ++ batch->position = 0; \
1870 ++ batch->generation = next_gen; \
1871 ++ } \
1872 ++ \
1873 ++ ret = batch->entropy[batch->position]; \
1874 ++ batch->entropy[batch->position] = 0; \
1875 ++ ++batch->position; \
1876 ++ local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags); \
1877 ++ return ret; \
1878 ++} \
1879 ++EXPORT_SYMBOL(get_random_ ##type);
1880 ++
1881 ++DEFINE_BATCHED_ENTROPY(u64)
1882 ++DEFINE_BATCHED_ENTROPY(u32)
1883 ++
1884 ++#ifdef CONFIG_SMP
1885 ++/*
1886 ++ * This function is called when the CPU is coming up, with entry
1887 ++ * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
1888 ++ */
1889 ++int __cold random_prepare_cpu(unsigned int cpu)
1890 + {
1891 +- _crng_backtrack_protect(select_crng(), tmp, used);
1892 ++ /*
1893 ++ * When the cpu comes back online, immediately invalidate both
1894 ++ * the per-cpu crng and all batches, so that we serve fresh
1895 ++ * randomness.
1896 ++ */
1897 ++ per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
1898 ++ per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
1899 ++ per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
1900 ++ return 0;
1901 + }
1902 ++#endif
1903 +
1904 +-static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1905 ++/*
1906 ++ * This function will use the architecture-specific hardware random
1907 ++ * number generator if it is available. It is not recommended for
1908 ++ * use. Use get_random_bytes() instead. It returns the number of
1909 ++ * bytes filled in.
1910 ++ */
1911 ++size_t __must_check get_random_bytes_arch(void *buf, size_t len)
1912 + {
1913 +- ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1914 +- u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1915 +- int large_request = (nbytes > 256);
1916 +-
1917 +- while (nbytes) {
1918 +- if (large_request && need_resched()) {
1919 +- if (signal_pending(current)) {
1920 +- if (ret == 0)
1921 +- ret = -ERESTARTSYS;
1922 +- break;
1923 +- }
1924 +- schedule();
1925 +- }
1926 ++ size_t left = len;
1927 ++ u8 *p = buf;
1928 ++
1929 ++ while (left) {
1930 ++ unsigned long v;
1931 ++ size_t block_len = min_t(size_t, left, sizeof(unsigned long));
1932 +
1933 +- extract_crng(tmp);
1934 +- i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1935 +- if (copy_to_user(buf, tmp, i)) {
1936 +- ret = -EFAULT;
1937 ++ if (!arch_get_random_long(&v))
1938 + break;
1939 +- }
1940 +
1941 +- nbytes -= i;
1942 +- buf += i;
1943 +- ret += i;
1944 ++ memcpy(p, &v, block_len);
1945 ++ p += block_len;
1946 ++ left -= block_len;
1947 + }
1948 +- crng_backtrack_protect(tmp, i);
1949 +-
1950 +- /* Wipe data just written to memory */
1951 +- memzero_explicit(tmp, sizeof(tmp));
1952 +
1953 +- return ret;
1954 ++ return len - left;
1955 + }
1956 ++EXPORT_SYMBOL(get_random_bytes_arch);
1957 +
1958 +-/*********************************************************************
1959 ++
1960 ++/**********************************************************************
1961 + *
1962 +- * Entropy input management
1963 ++ * Entropy accumulation and extraction routines.
1964 + *
1965 +- *********************************************************************/
1966 ++ * Callers may add entropy via:
1967 ++ *
1968 ++ * static void mix_pool_bytes(const void *buf, size_t len)
1969 ++ *
1970 ++ * After which, if added entropy should be credited:
1971 ++ *
1972 ++ * static void credit_init_bits(size_t bits)
1973 ++ *
1974 ++ * Finally, extract entropy via:
1975 ++ *
1976 ++ * static void extract_entropy(void *buf, size_t len)
1977 ++ *
1978 ++ **********************************************************************/
1979 +
1980 +-/* There is one of these per entropy source */
1981 +-struct timer_rand_state {
1982 +- cycles_t last_time;
1983 +- long last_delta, last_delta2;
1984 ++enum {
1985 ++ POOL_BITS = BLAKE2S_HASH_SIZE * 8,
1986 ++ POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
1987 ++ POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
1988 + };
1989 +
1990 +-#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1991 ++static struct {
1992 ++ struct blake2s_state hash;
1993 ++ spinlock_t lock;
1994 ++ unsigned int init_bits;
1995 ++} input_pool = {
1996 ++ .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
1997 ++ BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
1998 ++ BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
1999 ++ .hash.outlen = BLAKE2S_HASH_SIZE,
2000 ++ .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
2001 ++};
2002 ++
2003 ++static void _mix_pool_bytes(const void *buf, size_t len)
2004 ++{
2005 ++ blake2s_update(&input_pool.hash, buf, len);
2006 ++}
2007 +
2008 + /*
2009 +- * Add device- or boot-specific data to the input pool to help
2010 +- * initialize it.
2011 +- *
2012 +- * None of this adds any entropy; it is meant to avoid the problem of
2013 +- * the entropy pool having similar initial state across largely
2014 +- * identical devices.
2015 ++ * This function adds bytes into the input pool. It does not
2016 ++ * update the initialization bit counter; the caller should call
2017 ++ * credit_init_bits if this is appropriate.
2018 + */
2019 +-void add_device_randomness(const void *buf, unsigned int size)
2020 ++static void mix_pool_bytes(const void *buf, size_t len)
2021 + {
2022 +- unsigned long time = random_get_entropy() ^ jiffies;
2023 + unsigned long flags;
2024 +
2025 +- if (!crng_ready() && size)
2026 +- crng_slow_load(buf, size);
2027 +-
2028 +- trace_add_device_randomness(size, _RET_IP_);
2029 + spin_lock_irqsave(&input_pool.lock, flags);
2030 +- _mix_pool_bytes(buf, size);
2031 +- _mix_pool_bytes(&time, sizeof(time));
2032 ++ _mix_pool_bytes(buf, len);
2033 + spin_unlock_irqrestore(&input_pool.lock, flags);
2034 + }
2035 +-EXPORT_SYMBOL(add_device_randomness);
2036 +-
2037 +-static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
2038 +
2039 + /*
2040 +- * This function adds entropy to the entropy "pool" by using timing
2041 +- * delays. It uses the timer_rand_state structure to make an estimate
2042 +- * of how many bits of entropy this call has added to the pool.
2043 +- *
2044 +- * The number "num" is also added to the pool - it should somehow describe
2045 +- * the type of event which just happened. This is currently 0-255 for
2046 +- * keyboard scan codes, and 256 upwards for interrupts.
2047 +- *
2048 ++ * This is an HKDF-like construction for using the hashed collected entropy
2049 ++ * as a PRF key, that's then expanded block-by-block.
2050 + */
2051 +-static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
2052 ++static void extract_entropy(void *buf, size_t len)
2053 + {
2054 ++ unsigned long flags;
2055 ++ u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
2056 + struct {
2057 +- long jiffies;
2058 +- unsigned int cycles;
2059 +- unsigned int num;
2060 +- } sample;
2061 +- long delta, delta2, delta3;
2062 +-
2063 +- sample.jiffies = jiffies;
2064 +- sample.cycles = random_get_entropy();
2065 +- sample.num = num;
2066 +- mix_pool_bytes(&sample, sizeof(sample));
2067 +-
2068 +- /*
2069 +- * Calculate number of bits of randomness we probably added.
2070 +- * We take into account the first, second and third-order deltas
2071 +- * in order to make our estimate.
2072 +- */
2073 +- delta = sample.jiffies - READ_ONCE(state->last_time);
2074 +- WRITE_ONCE(state->last_time, sample.jiffies);
2075 +-
2076 +- delta2 = delta - READ_ONCE(state->last_delta);
2077 +- WRITE_ONCE(state->last_delta, delta);
2078 +-
2079 +- delta3 = delta2 - READ_ONCE(state->last_delta2);
2080 +- WRITE_ONCE(state->last_delta2, delta2);
2081 ++ unsigned long rdseed[32 / sizeof(long)];
2082 ++ size_t counter;
2083 ++ } block;
2084 ++ size_t i;
2085 ++
2086 ++ for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
2087 ++ if (!arch_get_random_seed_long(&block.rdseed[i]) &&
2088 ++ !arch_get_random_long(&block.rdseed[i]))
2089 ++ block.rdseed[i] = random_get_entropy();
2090 ++ }
2091 +
2092 +- if (delta < 0)
2093 +- delta = -delta;
2094 +- if (delta2 < 0)
2095 +- delta2 = -delta2;
2096 +- if (delta3 < 0)
2097 +- delta3 = -delta3;
2098 +- if (delta > delta2)
2099 +- delta = delta2;
2100 +- if (delta > delta3)
2101 +- delta = delta3;
2102 ++ spin_lock_irqsave(&input_pool.lock, flags);
2103 +
2104 +- /*
2105 +- * delta is now minimum absolute delta.
2106 +- * Round down by 1 bit on general principles,
2107 +- * and limit entropy estimate to 12 bits.
2108 +- */
2109 +- credit_entropy_bits(min_t(int, fls(delta >> 1), 11));
2110 +-}
2111 ++ /* seed = HASHPRF(last_key, entropy_input) */
2112 ++ blake2s_final(&input_pool.hash, seed);
2113 +
2114 +-void add_input_randomness(unsigned int type, unsigned int code,
2115 +- unsigned int value)
2116 +-{
2117 +- static unsigned char last_value;
2118 ++ /* next_key = HASHPRF(seed, RDSEED || 0) */
2119 ++ block.counter = 0;
2120 ++ blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
2121 ++ blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
2122 +
2123 +- /* ignore autorepeat and the like */
2124 +- if (value == last_value)
2125 +- return;
2126 ++ spin_unlock_irqrestore(&input_pool.lock, flags);
2127 ++ memzero_explicit(next_key, sizeof(next_key));
2128 ++
2129 ++ while (len) {
2130 ++ i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
2131 ++ /* output = HASHPRF(seed, RDSEED || ++counter) */
2132 ++ ++block.counter;
2133 ++ blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
2134 ++ len -= i;
2135 ++ buf += i;
2136 ++ }
2137 +
2138 +- last_value = value;
2139 +- add_timer_randomness(&input_timer_state,
2140 +- (type << 4) ^ code ^ (code >> 4) ^ value);
2141 +- trace_add_input_randomness(POOL_ENTROPY_BITS());
2142 ++ memzero_explicit(seed, sizeof(seed));
2143 ++ memzero_explicit(&block, sizeof(block));
2144 + }
2145 +-EXPORT_SYMBOL_GPL(add_input_randomness);
2146 +-
2147 +-static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
2148 +
2149 +-#ifdef ADD_INTERRUPT_BENCH
2150 +-static unsigned long avg_cycles, avg_deviation;
2151 ++#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
2152 +
2153 +-#define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
2154 +-#define FIXED_1_2 (1 << (AVG_SHIFT - 1))
2155 +-
2156 +-static void add_interrupt_bench(cycles_t start)
2157 ++static void __cold _credit_init_bits(size_t bits)
2158 + {
2159 +- long delta = random_get_entropy() - start;
2160 +-
2161 +- /* Use a weighted moving average */
2162 +- delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
2163 +- avg_cycles += delta;
2164 +- /* And average deviation */
2165 +- delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
2166 +- avg_deviation += delta;
2167 +-}
2168 +-#else
2169 +-#define add_interrupt_bench(x)
2170 +-#endif
2171 ++ static struct execute_work set_ready;
2172 ++ unsigned int new, orig, add;
2173 ++ unsigned long flags;
2174 +
2175 +-static u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
2176 +-{
2177 +- u32 *ptr = (u32 *)regs;
2178 +- unsigned int idx;
2179 ++ if (!bits)
2180 ++ return;
2181 +
2182 +- if (regs == NULL)
2183 +- return 0;
2184 +- idx = READ_ONCE(f->reg_idx);
2185 +- if (idx >= sizeof(struct pt_regs) / sizeof(u32))
2186 +- idx = 0;
2187 +- ptr += idx++;
2188 +- WRITE_ONCE(f->reg_idx, idx);
2189 +- return *ptr;
2190 +-}
2191 ++ add = min_t(size_t, bits, POOL_BITS);
2192 +
2193 +-void add_interrupt_randomness(int irq)
2194 +-{
2195 +- struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
2196 +- struct pt_regs *regs = get_irq_regs();
2197 +- unsigned long now = jiffies;
2198 +- cycles_t cycles = random_get_entropy();
2199 +- u32 c_high, j_high;
2200 +- u64 ip;
2201 +-
2202 +- if (cycles == 0)
2203 +- cycles = get_reg(fast_pool, regs);
2204 +- c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
2205 +- j_high = (sizeof(now) > 4) ? now >> 32 : 0;
2206 +- fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
2207 +- fast_pool->pool[1] ^= now ^ c_high;
2208 +- ip = regs ? instruction_pointer(regs) : _RET_IP_;
2209 +- fast_pool->pool[2] ^= ip;
2210 +- fast_pool->pool[3] ^=
2211 +- (sizeof(ip) > 4) ? ip >> 32 : get_reg(fast_pool, regs);
2212 +-
2213 +- fast_mix(fast_pool);
2214 +- add_interrupt_bench(cycles);
2215 +-
2216 +- if (unlikely(crng_init == 0)) {
2217 +- if ((fast_pool->count >= 64) &&
2218 +- crng_fast_load((u8 *)fast_pool->pool, sizeof(fast_pool->pool)) > 0) {
2219 +- fast_pool->count = 0;
2220 +- fast_pool->last = now;
2221 ++ do {
2222 ++ orig = READ_ONCE(input_pool.init_bits);
2223 ++ new = min_t(unsigned int, POOL_BITS, orig + add);
2224 ++ } while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
2225 ++
2226 ++ if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
2227 ++ crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
2228 ++ execute_in_process_context(crng_set_ready, &set_ready);
2229 ++ process_random_ready_list();
2230 ++ wake_up_interruptible(&crng_init_wait);
2231 ++ kill_fasync(&fasync, SIGIO, POLL_IN);
2232 ++ pr_notice("crng init done\n");
2233 ++ if (urandom_warning.missed)
2234 ++ pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
2235 ++ urandom_warning.missed);
2236 ++ } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
2237 ++ spin_lock_irqsave(&base_crng.lock, flags);
2238 ++ /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
2239 ++ if (crng_init == CRNG_EMPTY) {
2240 ++ extract_entropy(base_crng.key, sizeof(base_crng.key));
2241 ++ crng_init = CRNG_EARLY;
2242 + }
2243 +- return;
2244 ++ spin_unlock_irqrestore(&base_crng.lock, flags);
2245 + }
2246 ++}
2247 +
2248 +- if ((fast_pool->count < 64) && !time_after(now, fast_pool->last + HZ))
2249 +- return;
2250 +-
2251 +- if (!spin_trylock(&input_pool.lock))
2252 +- return;
2253 +-
2254 +- fast_pool->last = now;
2255 +- __mix_pool_bytes(&fast_pool->pool, sizeof(fast_pool->pool));
2256 +- spin_unlock(&input_pool.lock);
2257 +
2258 +- fast_pool->count = 0;
2259 ++/**********************************************************************
2260 ++ *
2261 ++ * Entropy collection routines.
2262 ++ *
2263 ++ * The following exported functions are used for pushing entropy into
2264 ++ * the above entropy accumulation routines:
2265 ++ *
2266 ++ * void add_device_randomness(const void *buf, size_t len);
2267 ++ * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
2268 ++ * void add_bootloader_randomness(const void *buf, size_t len);
2269 ++ * void add_interrupt_randomness(int irq);
2270 ++ * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
2271 ++ * void add_disk_randomness(struct gendisk *disk);
2272 ++ *
2273 ++ * add_device_randomness() adds data to the input pool that
2274 ++ * is likely to differ between two devices (or possibly even per boot).
2275 ++ * This would be things like MAC addresses or serial numbers, or the
2276 ++ * read-out of the RTC. This does *not* credit any actual entropy to
2277 ++ * the pool, but it initializes the pool to different values for devices
2278 ++ * that might otherwise be identical and have very little entropy
2279 ++ * available to them (particularly common in the embedded world).
2280 ++ *
2281 ++ * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
2282 ++ * entropy as specified by the caller. If the entropy pool is full it will
2283 ++ * block until more entropy is needed.
2284 ++ *
2285 ++ * add_bootloader_randomness() is called by bootloader drivers, such as EFI
2286 ++ * and device tree, and credits its input depending on whether or not the
2287 ++ * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
2288 ++ *
2289 ++ * add_interrupt_randomness() uses the interrupt timing as random
2290 ++ * inputs to the entropy pool. Using the cycle counters and the irq source
2291 ++ * as inputs, it feeds the input pool roughly once a second or after 64
2292 ++ * interrupts, crediting 1 bit of entropy for whichever comes first.
2293 ++ *
2294 ++ * add_input_randomness() uses the input layer interrupt timing, as well
2295 ++ * as the event type information from the hardware.
2296 ++ *
2297 ++ * add_disk_randomness() uses what amounts to the seek time of block
2298 ++ * layer request events, on a per-disk_devt basis, as input to the
2299 ++ * entropy pool. Note that high-speed solid state drives with very low
2300 ++ * seek times do not make for good sources of entropy, as their seek
2301 ++ * times are usually fairly consistent.
2302 ++ *
2303 ++ * The last two routines try to estimate how many bits of entropy
2304 ++ * to credit. They do this by keeping track of the first and second
2305 ++ * order deltas of the event timings.
2306 ++ *
2307 ++ **********************************************************************/
2308 +
2309 +- /* award one bit for the contents of the fast pool */
2310 +- credit_entropy_bits(1);
2311 ++static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
2312 ++static bool trust_bootloader __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
2313 ++static int __init parse_trust_cpu(char *arg)
2314 ++{
2315 ++ return kstrtobool(arg, &trust_cpu);
2316 + }
2317 +-EXPORT_SYMBOL_GPL(add_interrupt_randomness);
2318 +-
2319 +-#ifdef CONFIG_BLOCK
2320 +-void add_disk_randomness(struct gendisk *disk)
2321 ++static int __init parse_trust_bootloader(char *arg)
2322 + {
2323 +- if (!disk || !disk->random)
2324 +- return;
2325 +- /* first major is 1, so we get >= 0x200 here */
2326 +- add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
2327 +- trace_add_disk_randomness(disk_devt(disk), POOL_ENTROPY_BITS());
2328 ++ return kstrtobool(arg, &trust_bootloader);
2329 + }
2330 +-EXPORT_SYMBOL_GPL(add_disk_randomness);
2331 +-#endif
2332 +-
2333 +-/*********************************************************************
2334 +- *
2335 +- * Entropy extraction routines
2336 +- *
2337 +- *********************************************************************/
2338 ++early_param("random.trust_cpu", parse_trust_cpu);
2339 ++early_param("random.trust_bootloader", parse_trust_bootloader);
2340 +
2341 + /*
2342 +- * This function decides how many bytes to actually take from the
2343 +- * given pool, and also debits the entropy count accordingly.
2344 ++ * The first collection of entropy occurs at system boot while interrupts
2345 ++ * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
2346 ++ * utsname(), and the command line. Depending on the above configuration knob,
2347 ++ * RDSEED may be considered sufficient for initialization. Note that much
2348 ++ * earlier setup may already have pushed entropy into the input pool by the
2349 ++ * time we get here.
2350 + */
2351 +-static size_t account(size_t nbytes, int min)
2352 ++int __init random_init(const char *command_line)
2353 + {
2354 +- int entropy_count, orig;
2355 +- size_t ibytes, nfrac;
2356 ++ ktime_t now = ktime_get_real();
2357 ++ unsigned int i, arch_bytes;
2358 ++ unsigned long entropy;
2359 +
2360 +- BUG_ON(input_pool.entropy_count > POOL_FRACBITS);
2361 ++#if defined(LATENT_ENTROPY_PLUGIN)
2362 ++ static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
2363 ++ _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
2364 ++#endif
2365 +
2366 +- /* Can we pull enough? */
2367 +-retry:
2368 +- entropy_count = orig = READ_ONCE(input_pool.entropy_count);
2369 +- if (WARN_ON(entropy_count < 0)) {
2370 +- pr_warn("negative entropy count: count %d\n", entropy_count);
2371 +- entropy_count = 0;
2372 ++ for (i = 0, arch_bytes = BLAKE2S_BLOCK_SIZE;
2373 ++ i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
2374 ++ if (!arch_get_random_seed_long_early(&entropy) &&
2375 ++ !arch_get_random_long_early(&entropy)) {
2376 ++ entropy = random_get_entropy();
2377 ++ arch_bytes -= sizeof(entropy);
2378 ++ }
2379 ++ _mix_pool_bytes(&entropy, sizeof(entropy));
2380 + }
2381 ++ _mix_pool_bytes(&now, sizeof(now));
2382 ++ _mix_pool_bytes(utsname(), sizeof(*(utsname())));
2383 ++ _mix_pool_bytes(command_line, strlen(command_line));
2384 ++ add_latent_entropy();
2385 +
2386 +- /* never pull more than available */
2387 +- ibytes = min_t(size_t, nbytes, entropy_count >> (POOL_ENTROPY_SHIFT + 3));
2388 +- if (ibytes < min)
2389 +- ibytes = 0;
2390 +- nfrac = ibytes << (POOL_ENTROPY_SHIFT + 3);
2391 +- if ((size_t)entropy_count > nfrac)
2392 +- entropy_count -= nfrac;
2393 +- else
2394 +- entropy_count = 0;
2395 +-
2396 +- if (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig)
2397 +- goto retry;
2398 +-
2399 +- trace_debit_entropy(8 * ibytes);
2400 +- if (ibytes && POOL_ENTROPY_BITS() < random_write_wakeup_bits) {
2401 +- wake_up_interruptible(&random_write_wait);
2402 +- kill_fasync(&fasync, SIGIO, POLL_OUT);
2403 +- }
2404 ++ if (crng_ready())
2405 ++ crng_reseed();
2406 ++ else if (trust_cpu)
2407 ++ credit_init_bits(arch_bytes * 8);
2408 +
2409 +- return ibytes;
2410 ++ return 0;
2411 + }
2412 +
2413 + /*
2414 +- * This function does the actual extraction for extract_entropy.
2415 ++ * Add device- or boot-specific data to the input pool to help
2416 ++ * initialize it.
2417 + *
2418 +- * Note: we assume that .poolwords is a multiple of 16 words.
2419 ++ * None of this adds any entropy; it is meant to avoid the problem of
2420 ++ * the entropy pool having similar initial state across largely
2421 ++ * identical devices.
2422 + */
2423 +-static void extract_buf(u8 *out)
2424 ++void add_device_randomness(const void *buf, size_t len)
2425 + {
2426 +- struct blake2s_state state __aligned(__alignof__(unsigned long));
2427 +- u8 hash[BLAKE2S_HASH_SIZE];
2428 +- unsigned long *salt;
2429 ++ unsigned long entropy = random_get_entropy();
2430 + unsigned long flags;
2431 +
2432 +- blake2s_init(&state, sizeof(hash));
2433 +-
2434 +- /*
2435 +- * If we have an architectural hardware random number
2436 +- * generator, use it for BLAKE2's salt & personal fields.
2437 +- */
2438 +- for (salt = (unsigned long *)&state.h[4];
2439 +- salt < (unsigned long *)&state.h[8]; ++salt) {
2440 +- unsigned long v;
2441 +- if (!arch_get_random_long(&v))
2442 +- break;
2443 +- *salt ^= v;
2444 +- }
2445 +-
2446 +- /* Generate a hash across the pool */
2447 + spin_lock_irqsave(&input_pool.lock, flags);
2448 +- blake2s_update(&state, (const u8 *)input_pool_data, POOL_BYTES);
2449 +- blake2s_final(&state, hash); /* final zeros out state */
2450 +-
2451 +- /*
2452 +- * We mix the hash back into the pool to prevent backtracking
2453 +- * attacks (where the attacker knows the state of the pool
2454 +- * plus the current outputs, and attempts to find previous
2455 +- * outputs), unless the hash function can be inverted. By
2456 +- * mixing at least a hash worth of hash data back, we make
2457 +- * brute-forcing the feedback as hard as brute-forcing the
2458 +- * hash.
2459 +- */
2460 +- __mix_pool_bytes(hash, sizeof(hash));
2461 ++ _mix_pool_bytes(&entropy, sizeof(entropy));
2462 ++ _mix_pool_bytes(buf, len);
2463 + spin_unlock_irqrestore(&input_pool.lock, flags);
2464 +-
2465 +- /* Note that EXTRACT_SIZE is half of hash size here, because above
2466 +- * we've dumped the full length back into mixer. By reducing the
2467 +- * amount that we emit, we retain a level of forward secrecy.
2468 +- */
2469 +- memcpy(out, hash, EXTRACT_SIZE);
2470 +- memzero_explicit(hash, sizeof(hash));
2471 + }
2472 ++EXPORT_SYMBOL(add_device_randomness);
2473 +
2474 +-static ssize_t _extract_entropy(void *buf, size_t nbytes)
2475 ++/*
2476 ++ * Interface for in-kernel drivers of true hardware RNGs.
2477 ++ * Those devices may produce endless random bits and will be throttled
2478 ++ * when our pool is full.
2479 ++ */
2480 ++void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
2481 + {
2482 +- ssize_t ret = 0, i;
2483 +- u8 tmp[EXTRACT_SIZE];
2484 +-
2485 +- while (nbytes) {
2486 +- extract_buf(tmp);
2487 +- i = min_t(int, nbytes, EXTRACT_SIZE);
2488 +- memcpy(buf, tmp, i);
2489 +- nbytes -= i;
2490 +- buf += i;
2491 +- ret += i;
2492 +- }
2493 ++ mix_pool_bytes(buf, len);
2494 ++ credit_init_bits(entropy);
2495 +
2496 +- /* Wipe data just returned from memory */
2497 +- memzero_explicit(tmp, sizeof(tmp));
2498 +-
2499 +- return ret;
2500 ++ /*
2501 ++ * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
2502 ++ * we're not yet initialized.
2503 ++ */
2504 ++ if (!kthread_should_stop() && crng_ready())
2505 ++ schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
2506 + }
2507 ++EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2508 +
2509 + /*
2510 +- * This function extracts randomness from the "entropy pool", and
2511 +- * returns it in a buffer.
2512 +- *
2513 +- * The min parameter specifies the minimum amount we can pull before
2514 +- * failing to avoid races that defeat catastrophic reseeding.
2515 ++ * Handle random seed passed by bootloader, and credit it if
2516 ++ * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
2517 + */
2518 +-static ssize_t extract_entropy(void *buf, size_t nbytes, int min)
2519 ++void __cold add_bootloader_randomness(const void *buf, size_t len)
2520 + {
2521 +- trace_extract_entropy(nbytes, POOL_ENTROPY_BITS(), _RET_IP_);
2522 +- nbytes = account(nbytes, min);
2523 +- return _extract_entropy(buf, nbytes);
2524 ++ mix_pool_bytes(buf, len);
2525 ++ if (trust_bootloader)
2526 ++ credit_init_bits(len * 8);
2527 + }
2528 ++EXPORT_SYMBOL_GPL(add_bootloader_randomness);
2529 +
2530 +-#define warn_unseeded_randomness(previous) \
2531 +- _warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))
2532 ++struct fast_pool {
2533 ++ struct work_struct mix;
2534 ++ unsigned long pool[4];
2535 ++ unsigned long last;
2536 ++ unsigned int count;
2537 ++};
2538 +
2539 +-static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
2540 +-{
2541 +-#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
2542 +- const bool print_once = false;
2543 ++static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
2544 ++#ifdef CONFIG_64BIT
2545 ++#define FASTMIX_PERM SIPHASH_PERMUTATION
2546 ++ .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 }
2547 + #else
2548 +- static bool print_once __read_mostly;
2549 +-#endif
2550 +-
2551 +- if (print_once || crng_ready() ||
2552 +- (previous && (caller == READ_ONCE(*previous))))
2553 +- return;
2554 +- WRITE_ONCE(*previous, caller);
2555 +-#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
2556 +- print_once = true;
2557 ++#define FASTMIX_PERM HSIPHASH_PERMUTATION
2558 ++ .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 }
2559 + #endif
2560 +- if (__ratelimit(&unseeded_warning))
2561 +- printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
2562 +- func_name, caller, crng_init);
2563 +-}
2564 ++};
2565 +
2566 + /*
2567 +- * This function is the exported kernel interface. It returns some
2568 +- * number of good random numbers, suitable for key generation, seeding
2569 +- * TCP sequence numbers, etc. It does not rely on the hardware random
2570 +- * number generator. For random bytes direct from the hardware RNG
2571 +- * (when available), use get_random_bytes_arch(). In order to ensure
2572 +- * that the randomness provided by this function is okay, the function
2573 +- * wait_for_random_bytes() should be called and return 0 at least once
2574 +- * at any point prior.
2575 ++ * This is [Half]SipHash-1-x, starting from an empty key. Because
2576 ++ * the key is fixed, it assumes that its inputs are non-malicious,
2577 ++ * and therefore this has no security on its own. s represents the
2578 ++ * four-word SipHash state, while v represents a two-word input.
2579 + */
2580 +-static void _get_random_bytes(void *buf, int nbytes)
2581 +-{
2582 +- u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
2583 +-
2584 +- trace_get_random_bytes(nbytes, _RET_IP_);
2585 +-
2586 +- while (nbytes >= CHACHA_BLOCK_SIZE) {
2587 +- extract_crng(buf);
2588 +- buf += CHACHA_BLOCK_SIZE;
2589 +- nbytes -= CHACHA_BLOCK_SIZE;
2590 +- }
2591 +-
2592 +- if (nbytes > 0) {
2593 +- extract_crng(tmp);
2594 +- memcpy(buf, tmp, nbytes);
2595 +- crng_backtrack_protect(tmp, nbytes);
2596 +- } else
2597 +- crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
2598 +- memzero_explicit(tmp, sizeof(tmp));
2599 +-}
2600 +-
2601 +-void get_random_bytes(void *buf, int nbytes)
2602 ++static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
2603 + {
2604 +- static void *previous;
2605 +-
2606 +- warn_unseeded_randomness(&previous);
2607 +- _get_random_bytes(buf, nbytes);
2608 ++ s[3] ^= v1;
2609 ++ FASTMIX_PERM(s[0], s[1], s[2], s[3]);
2610 ++ s[0] ^= v1;
2611 ++ s[3] ^= v2;
2612 ++ FASTMIX_PERM(s[0], s[1], s[2], s[3]);
2613 ++ s[0] ^= v2;
2614 + }
2615 +-EXPORT_SYMBOL(get_random_bytes);
2616 +
2617 ++#ifdef CONFIG_SMP
2618 + /*
2619 +- * Each time the timer fires, we expect that we got an unpredictable
2620 +- * jump in the cycle counter. Even if the timer is running on another
2621 +- * CPU, the timer activity will be touching the stack of the CPU that is
2622 +- * generating entropy..
2623 +- *
2624 +- * Note that we don't re-arm the timer in the timer itself - we are
2625 +- * happy to be scheduled away, since that just makes the load more
2626 +- * complex, but we do not want the timer to keep ticking unless the
2627 +- * entropy loop is running.
2628 +- *
2629 +- * So the re-arming always happens in the entropy loop itself.
2630 ++ * This function is called when the CPU has just come online, with
2631 ++ * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
2632 + */
2633 +-static void entropy_timer(struct timer_list *t)
2634 ++int __cold random_online_cpu(unsigned int cpu)
2635 + {
2636 +- credit_entropy_bits(1);
2637 ++ /*
2638 ++ * During CPU shutdown and before CPU onlining, add_interrupt_
2639 ++ * randomness() may schedule mix_interrupt_randomness(), and
2640 ++ * set the MIX_INFLIGHT flag. However, because the worker can
2641 ++ * be scheduled on a different CPU during this period, that
2642 ++ * flag will never be cleared. For that reason, we zero out
2643 ++ * the flag here, which runs just after workqueues are onlined
2644 ++ * for the CPU again. This also has the effect of setting the
2645 ++ * irq randomness count to zero so that new accumulated irqs
2646 ++ * are fresh.
2647 ++ */
2648 ++ per_cpu_ptr(&irq_randomness, cpu)->count = 0;
2649 ++ return 0;
2650 + }
2651 ++#endif
2652 +
2653 +-/*
2654 +- * If we have an actual cycle counter, see if we can
2655 +- * generate enough entropy with timing noise
2656 +- */
2657 +-static void try_to_generate_entropy(void)
2658 ++static void mix_interrupt_randomness(struct work_struct *work)
2659 + {
2660 +- struct {
2661 +- unsigned long now;
2662 +- struct timer_list timer;
2663 +- } stack;
2664 +-
2665 +- stack.now = random_get_entropy();
2666 ++ struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
2667 ++ /*
2668 ++ * The size of the copied stack pool is explicitly 2 longs so that we
2669 ++ * only ever ingest half of the siphash output each time, retaining
2670 ++ * the other half as the next "key" that carries over. The entropy is
2671 ++ * supposed to be sufficiently dispersed between bits so on average
2672 ++ * we don't wind up "losing" some.
2673 ++ */
2674 ++ unsigned long pool[2];
2675 ++ unsigned int count;
2676 +
2677 +- /* Slow counter - or none. Don't even bother */
2678 +- if (stack.now == random_get_entropy())
2679 ++ /* Check to see if we're running on the wrong CPU due to hotplug. */
2680 ++ local_irq_disable();
2681 ++ if (fast_pool != this_cpu_ptr(&irq_randomness)) {
2682 ++ local_irq_enable();
2683 + return;
2684 +-
2685 +- timer_setup_on_stack(&stack.timer, entropy_timer, 0);
2686 +- while (!crng_ready()) {
2687 +- if (!timer_pending(&stack.timer))
2688 +- mod_timer(&stack.timer, jiffies + 1);
2689 +- mix_pool_bytes(&stack.now, sizeof(stack.now));
2690 +- schedule();
2691 +- stack.now = random_get_entropy();
2692 + }
2693 +
2694 +- del_timer_sync(&stack.timer);
2695 +- destroy_timer_on_stack(&stack.timer);
2696 +- mix_pool_bytes(&stack.now, sizeof(stack.now));
2697 +-}
2698 +-
2699 +-/*
2700 +- * Wait for the urandom pool to be seeded and thus guaranteed to supply
2701 +- * cryptographically secure random numbers. This applies to: the /dev/urandom
2702 +- * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
2703 +- * family of functions. Using any of these functions without first calling
2704 +- * this function forfeits the guarantee of security.
2705 +- *
2706 +- * Returns: 0 if the urandom pool has been seeded.
2707 +- * -ERESTARTSYS if the function was interrupted by a signal.
2708 +- */
2709 +-int wait_for_random_bytes(void)
2710 +-{
2711 +- if (likely(crng_ready()))
2712 +- return 0;
2713 +-
2714 +- do {
2715 +- int ret;
2716 +- ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
2717 +- if (ret)
2718 +- return ret > 0 ? 0 : ret;
2719 ++ /*
2720 ++ * Copy the pool to the stack so that the mixer always has a
2721 ++ * consistent view, before we reenable irqs again.
2722 ++ */
2723 ++ memcpy(pool, fast_pool->pool, sizeof(pool));
2724 ++ count = fast_pool->count;
2725 ++ fast_pool->count = 0;
2726 ++ fast_pool->last = jiffies;
2727 ++ local_irq_enable();
2728 +
2729 +- try_to_generate_entropy();
2730 +- } while (!crng_ready());
2731 ++ mix_pool_bytes(pool, sizeof(pool));
2732 ++ credit_init_bits(max(1u, (count & U16_MAX) / 64));
2733 +
2734 +- return 0;
2735 ++ memzero_explicit(pool, sizeof(pool));
2736 + }
2737 +-EXPORT_SYMBOL(wait_for_random_bytes);
2738 +
2739 +-/*
2740 +- * Returns whether or not the urandom pool has been seeded and thus guaranteed
2741 +- * to supply cryptographically secure random numbers. This applies to: the
2742 +- * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
2743 +- * ,u64,int,long} family of functions.
2744 +- *
2745 +- * Returns: true if the urandom pool has been seeded.
2746 +- * false if the urandom pool has not been seeded.
2747 +- */
2748 +-bool rng_is_initialized(void)
2749 +-{
2750 +- return crng_ready();
2751 +-}
2752 +-EXPORT_SYMBOL(rng_is_initialized);
2753 +-
2754 +-/*
2755 +- * Add a callback function that will be invoked when the nonblocking
2756 +- * pool is initialised.
2757 +- *
2758 +- * returns: 0 if callback is successfully added
2759 +- * -EALREADY if pool is already initialised (callback not called)
2760 +- * -ENOENT if module for callback is not alive
2761 +- */
2762 +-int add_random_ready_callback(struct random_ready_callback *rdy)
2763 ++void add_interrupt_randomness(int irq)
2764 + {
2765 +- struct module *owner;
2766 +- unsigned long flags;
2767 +- int err = -EALREADY;
2768 +-
2769 +- if (crng_ready())
2770 +- return err;
2771 +-
2772 +- owner = rdy->owner;
2773 +- if (!try_module_get(owner))
2774 +- return -ENOENT;
2775 +-
2776 +- spin_lock_irqsave(&random_ready_list_lock, flags);
2777 +- if (crng_ready())
2778 +- goto out;
2779 +-
2780 +- owner = NULL;
2781 ++ enum { MIX_INFLIGHT = 1U << 31 };
2782 ++ unsigned long entropy = random_get_entropy();
2783 ++ struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
2784 ++ struct pt_regs *regs = get_irq_regs();
2785 ++ unsigned int new_count;
2786 +
2787 +- list_add(&rdy->list, &random_ready_list);
2788 +- err = 0;
2789 ++ fast_mix(fast_pool->pool, entropy,
2790 ++ (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
2791 ++ new_count = ++fast_pool->count;
2792 +
2793 +-out:
2794 +- spin_unlock_irqrestore(&random_ready_list_lock, flags);
2795 ++ if (new_count & MIX_INFLIGHT)
2796 ++ return;
2797 +
2798 +- module_put(owner);
2799 ++ if (new_count < 64 && !time_is_before_jiffies(fast_pool->last + HZ))
2800 ++ return;
2801 +
2802 +- return err;
2803 ++ if (unlikely(!fast_pool->mix.func))
2804 ++ INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
2805 ++ fast_pool->count |= MIX_INFLIGHT;
2806 ++ queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
2807 + }
2808 +-EXPORT_SYMBOL(add_random_ready_callback);
2809 ++EXPORT_SYMBOL_GPL(add_interrupt_randomness);
2810 ++
2811 ++/* There is one of these per entropy source */
2812 ++struct timer_rand_state {
2813 ++ unsigned long last_time;
2814 ++ long last_delta, last_delta2;
2815 ++};
2816 +
2817 + /*
2818 +- * Delete a previously registered readiness callback function.
2819 ++ * This function adds entropy to the entropy "pool" by using timing
2820 ++ * delays. It uses the timer_rand_state structure to make an estimate
2821 ++ * of how many bits of entropy this call has added to the pool. The
2822 ++ * value "num" is also added to the pool; it should somehow describe
2823 ++ * the type of event that just happened.
2824 + */
2825 +-void del_random_ready_callback(struct random_ready_callback *rdy)
2826 ++static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
2827 + {
2828 +- unsigned long flags;
2829 +- struct module *owner = NULL;
2830 ++ unsigned long entropy = random_get_entropy(), now = jiffies, flags;
2831 ++ long delta, delta2, delta3;
2832 ++ unsigned int bits;
2833 +
2834 +- spin_lock_irqsave(&random_ready_list_lock, flags);
2835 +- if (!list_empty(&rdy->list)) {
2836 +- list_del_init(&rdy->list);
2837 +- owner = rdy->owner;
2838 ++ /*
2839 ++ * If we're in a hard IRQ, add_interrupt_randomness() will be called
2840 ++ * sometime after, so mix into the fast pool.
2841 ++ */
2842 ++ if (in_hardirq()) {
2843 ++ fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
2844 ++ } else {
2845 ++ spin_lock_irqsave(&input_pool.lock, flags);
2846 ++ _mix_pool_bytes(&entropy, sizeof(entropy));
2847 ++ _mix_pool_bytes(&num, sizeof(num));
2848 ++ spin_unlock_irqrestore(&input_pool.lock, flags);
2849 + }
2850 +- spin_unlock_irqrestore(&random_ready_list_lock, flags);
2851 +
2852 +- module_put(owner);
2853 +-}
2854 +-EXPORT_SYMBOL(del_random_ready_callback);
2855 ++ if (crng_ready())
2856 ++ return;
2857 +
2858 +-/*
2859 +- * This function will use the architecture-specific hardware random
2860 +- * number generator if it is available. The arch-specific hw RNG will
2861 +- * almost certainly be faster than what we can do in software, but it
2862 +- * is impossible to verify that it is implemented securely (as
2863 +- * opposed, to, say, the AES encryption of a sequence number using a
2864 +- * key known by the NSA). So it's useful if we need the speed, but
2865 +- * only if we're willing to trust the hardware manufacturer not to
2866 +- * have put in a back door.
2867 +- *
2868 +- * Return number of bytes filled in.
2869 +- */
2870 +-int __must_check get_random_bytes_arch(void *buf, int nbytes)
2871 +-{
2872 +- int left = nbytes;
2873 +- u8 *p = buf;
2874 ++ /*
2875 ++ * Calculate number of bits of randomness we probably added.
2876 ++ * We take into account the first, second and third-order deltas
2877 ++ * in order to make our estimate.
2878 ++ */
2879 ++ delta = now - READ_ONCE(state->last_time);
2880 ++ WRITE_ONCE(state->last_time, now);
2881 ++
2882 ++ delta2 = delta - READ_ONCE(state->last_delta);
2883 ++ WRITE_ONCE(state->last_delta, delta);
2884 +
2885 +- trace_get_random_bytes_arch(left, _RET_IP_);
2886 +- while (left) {
2887 +- unsigned long v;
2888 +- int chunk = min_t(int, left, sizeof(unsigned long));
2889 ++ delta3 = delta2 - READ_ONCE(state->last_delta2);
2890 ++ WRITE_ONCE(state->last_delta2, delta2);
2891 +
2892 +- if (!arch_get_random_long(&v))
2893 +- break;
2894 ++ if (delta < 0)
2895 ++ delta = -delta;
2896 ++ if (delta2 < 0)
2897 ++ delta2 = -delta2;
2898 ++ if (delta3 < 0)
2899 ++ delta3 = -delta3;
2900 ++ if (delta > delta2)
2901 ++ delta = delta2;
2902 ++ if (delta > delta3)
2903 ++ delta = delta3;
2904 +
2905 +- memcpy(p, &v, chunk);
2906 +- p += chunk;
2907 +- left -= chunk;
2908 +- }
2909 ++ /*
2910 ++ * delta is now minimum absolute delta. Round down by 1 bit
2911 ++ * on general principles, and limit entropy estimate to 11 bits.
2912 ++ */
2913 ++ bits = min(fls(delta >> 1), 11);
2914 +
2915 +- return nbytes - left;
2916 ++ /*
2917 ++ * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
2918 ++ * will run after this, which uses a different crediting scheme of 1 bit
2919 ++ * per every 64 interrupts. In order to let that function do accounting
2920 ++ * close to the one in this function, we credit a full 64/64 bit per bit,
2921 ++ * and then subtract one to account for the extra one added.
2922 ++ */
2923 ++ if (in_hardirq())
2924 ++ this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
2925 ++ else
2926 ++ _credit_init_bits(bits);
2927 + }
2928 +-EXPORT_SYMBOL(get_random_bytes_arch);
2929 +
2930 +-/*
2931 +- * init_std_data - initialize pool with system data
2932 +- *
2933 +- * This function clears the pool's entropy count and mixes some system
2934 +- * data into the pool to prepare it for use. The pool is not cleared
2935 +- * as that can only decrease the entropy in the pool.
2936 +- */
2937 +-static void __init init_std_data(void)
2938 ++void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
2939 + {
2940 +- int i;
2941 +- ktime_t now = ktime_get_real();
2942 +- unsigned long rv;
2943 +-
2944 +- mix_pool_bytes(&now, sizeof(now));
2945 +- for (i = POOL_BYTES; i > 0; i -= sizeof(rv)) {
2946 +- if (!arch_get_random_seed_long(&rv) &&
2947 +- !arch_get_random_long(&rv))
2948 +- rv = random_get_entropy();
2949 +- mix_pool_bytes(&rv, sizeof(rv));
2950 +- }
2951 +- mix_pool_bytes(utsname(), sizeof(*(utsname())));
2952 ++ static unsigned char last_value;
2953 ++ static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
2954 ++
2955 ++ /* Ignore autorepeat and the like. */
2956 ++ if (value == last_value)
2957 ++ return;
2958 ++
2959 ++ last_value = value;
2960 ++ add_timer_randomness(&input_timer_state,
2961 ++ (type << 4) ^ code ^ (code >> 4) ^ value);
2962 + }
2963 ++EXPORT_SYMBOL_GPL(add_input_randomness);
2964 +
2965 +-/*
2966 +- * Note that setup_arch() may call add_device_randomness()
2967 +- * long before we get here. This allows seeding of the pools
2968 +- * with some platform dependent data very early in the boot
2969 +- * process. But it limits our options here. We must use
2970 +- * statically allocated structures that already have all
2971 +- * initializations complete at compile time. We should also
2972 +- * take care not to overwrite the precious per platform data
2973 +- * we were given.
2974 +- */
2975 +-int __init rand_initialize(void)
2976 ++#ifdef CONFIG_BLOCK
2977 ++void add_disk_randomness(struct gendisk *disk)
2978 + {
2979 +- init_std_data();
2980 +- if (crng_need_final_init)
2981 +- crng_finalize_init();
2982 +- crng_initialize_primary();
2983 +- crng_global_init_time = jiffies;
2984 +- if (ratelimit_disable) {
2985 +- urandom_warning.interval = 0;
2986 +- unseeded_warning.interval = 0;
2987 +- }
2988 +- return 0;
2989 ++ if (!disk || !disk->random)
2990 ++ return;
2991 ++ /* First major is 1, so we get >= 0x200 here. */
2992 ++ add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
2993 + }
2994 ++EXPORT_SYMBOL_GPL(add_disk_randomness);
2995 +
2996 +-#ifdef CONFIG_BLOCK
2997 +-void rand_initialize_disk(struct gendisk *disk)
2998 ++void __cold rand_initialize_disk(struct gendisk *disk)
2999 + {
3000 + struct timer_rand_state *state;
3001 +
3002 +@@ -1724,109 +1139,189 @@ void rand_initialize_disk(struct gendisk *disk)
3003 + }
3004 + #endif
3005 +
3006 +-static ssize_t urandom_read_nowarn(struct file *file, char __user *buf,
3007 +- size_t nbytes, loff_t *ppos)
3008 ++/*
3009 ++ * Each time the timer fires, we expect that we got an unpredictable
3010 ++ * jump in the cycle counter. Even if the timer is running on another
3011 ++ * CPU, the timer activity will be touching the stack of the CPU that is
3012 ++ * generating entropy..
3013 ++ *
3014 ++ * Note that we don't re-arm the timer in the timer itself - we are
3015 ++ * happy to be scheduled away, since that just makes the load more
3016 ++ * complex, but we do not want the timer to keep ticking unless the
3017 ++ * entropy loop is running.
3018 ++ *
3019 ++ * So the re-arming always happens in the entropy loop itself.
3020 ++ */
3021 ++static void __cold entropy_timer(struct timer_list *t)
3022 + {
3023 +- int ret;
3024 +-
3025 +- nbytes = min_t(size_t, nbytes, INT_MAX >> (POOL_ENTROPY_SHIFT + 3));
3026 +- ret = extract_crng_user(buf, nbytes);
3027 +- trace_urandom_read(8 * nbytes, 0, POOL_ENTROPY_BITS());
3028 +- return ret;
3029 ++ credit_init_bits(1);
3030 + }
3031 +
3032 +-static ssize_t urandom_read(struct file *file, char __user *buf, size_t nbytes,
3033 +- loff_t *ppos)
3034 ++/*
3035 ++ * If we have an actual cycle counter, see if we can
3036 ++ * generate enough entropy with timing noise
3037 ++ */
3038 ++static void __cold try_to_generate_entropy(void)
3039 + {
3040 +- static int maxwarn = 10;
3041 ++ struct {
3042 ++ unsigned long entropy;
3043 ++ struct timer_list timer;
3044 ++ } stack;
3045 ++
3046 ++ stack.entropy = random_get_entropy();
3047 ++
3048 ++ /* Slow counter - or none. Don't even bother */
3049 ++ if (stack.entropy == random_get_entropy())
3050 ++ return;
3051 +
3052 +- if (!crng_ready() && maxwarn > 0) {
3053 +- maxwarn--;
3054 +- if (__ratelimit(&urandom_warning))
3055 +- pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
3056 +- current->comm, nbytes);
3057 ++ timer_setup_on_stack(&stack.timer, entropy_timer, 0);
3058 ++ while (!crng_ready() && !signal_pending(current)) {
3059 ++ if (!timer_pending(&stack.timer))
3060 ++ mod_timer(&stack.timer, jiffies + 1);
3061 ++ mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
3062 ++ schedule();
3063 ++ stack.entropy = random_get_entropy();
3064 + }
3065 +
3066 +- return urandom_read_nowarn(file, buf, nbytes, ppos);
3067 ++ del_timer_sync(&stack.timer);
3068 ++ destroy_timer_on_stack(&stack.timer);
3069 ++ mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
3070 + }
3071 +
3072 +-static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
3073 +- loff_t *ppos)
3074 ++
3075 ++/**********************************************************************
3076 ++ *
3077 ++ * Userspace reader/writer interfaces.
3078 ++ *
3079 ++ * getrandom(2) is the primary modern interface into the RNG and should
3080 ++ * be used in preference to anything else.
3081 ++ *
3082 ++ * Reading from /dev/random has the same functionality as calling
3083 ++ * getrandom(2) with flags=0. In earlier versions, however, it had
3084 ++ * vastly different semantics and should therefore be avoided, to
3085 ++ * prevent backwards compatibility issues.
3086 ++ *
3087 ++ * Reading from /dev/urandom has the same functionality as calling
3088 ++ * getrandom(2) with flags=GRND_INSECURE. Because it does not block
3089 ++ * waiting for the RNG to be ready, it should not be used.
3090 ++ *
3091 ++ * Writing to either /dev/random or /dev/urandom adds entropy to
3092 ++ * the input pool but does not credit it.
3093 ++ *
3094 ++ * Polling on /dev/random indicates when the RNG is initialized, on
3095 ++ * the read side, and when it wants new entropy, on the write side.
3096 ++ *
3097 ++ * Both /dev/random and /dev/urandom have the same set of ioctls for
3098 ++ * adding entropy, getting the entropy count, zeroing the count, and
3099 ++ * reseeding the crng.
3100 ++ *
3101 ++ **********************************************************************/
3102 ++
3103 ++SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
3104 + {
3105 ++ struct iov_iter iter;
3106 ++ struct iovec iov;
3107 + int ret;
3108 +
3109 +- ret = wait_for_random_bytes();
3110 +- if (ret != 0)
3111 ++ if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
3112 ++ return -EINVAL;
3113 ++
3114 ++ /*
3115 ++ * Requesting insecure and blocking randomness at the same time makes
3116 ++ * no sense.
3117 ++ */
3118 ++ if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
3119 ++ return -EINVAL;
3120 ++
3121 ++ if (!crng_ready() && !(flags & GRND_INSECURE)) {
3122 ++ if (flags & GRND_NONBLOCK)
3123 ++ return -EAGAIN;
3124 ++ ret = wait_for_random_bytes();
3125 ++ if (unlikely(ret))
3126 ++ return ret;
3127 ++ }
3128 ++
3129 ++ ret = import_single_range(READ, ubuf, len, &iov, &iter);
3130 ++ if (unlikely(ret))
3131 + return ret;
3132 +- return urandom_read_nowarn(file, buf, nbytes, ppos);
3133 ++ return get_random_bytes_user(&iter);
3134 + }
3135 +
3136 + static __poll_t random_poll(struct file *file, poll_table *wait)
3137 + {
3138 +- __poll_t mask;
3139 +-
3140 + poll_wait(file, &crng_init_wait, wait);
3141 +- poll_wait(file, &random_write_wait, wait);
3142 +- mask = 0;
3143 +- if (crng_ready())
3144 +- mask |= EPOLLIN | EPOLLRDNORM;
3145 +- if (POOL_ENTROPY_BITS() < random_write_wakeup_bits)
3146 +- mask |= EPOLLOUT | EPOLLWRNORM;
3147 +- return mask;
3148 ++ return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
3149 + }
3150 +
3151 +-static int write_pool(const char __user *buffer, size_t count)
3152 ++static ssize_t write_pool_user(struct iov_iter *iter)
3153 + {
3154 +- size_t bytes;
3155 +- u32 t, buf[16];
3156 +- const char __user *p = buffer;
3157 ++ u8 block[BLAKE2S_BLOCK_SIZE];
3158 ++ ssize_t ret = 0;
3159 ++ size_t copied;
3160 +
3161 +- while (count > 0) {
3162 +- int b, i = 0;
3163 ++ if (unlikely(!iov_iter_count(iter)))
3164 ++ return 0;
3165 +
3166 +- bytes = min(count, sizeof(buf));
3167 +- if (copy_from_user(&buf, p, bytes))
3168 +- return -EFAULT;
3169 ++ for (;;) {
3170 ++ copied = copy_from_iter(block, sizeof(block), iter);
3171 ++ ret += copied;
3172 ++ mix_pool_bytes(block, copied);
3173 ++ if (!iov_iter_count(iter) || copied != sizeof(block))
3174 ++ break;
3175 +
3176 +- for (b = bytes; b > 0; b -= sizeof(u32), i++) {
3177 +- if (!arch_get_random_int(&t))
3178 ++ BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
3179 ++ if (ret % PAGE_SIZE == 0) {
3180 ++ if (signal_pending(current))
3181 + break;
3182 +- buf[i] ^= t;
3183 ++ cond_resched();
3184 + }
3185 ++ }
3186 +
3187 +- count -= bytes;
3188 +- p += bytes;
3189 ++ memzero_explicit(block, sizeof(block));
3190 ++ return ret ? ret : -EFAULT;
3191 ++}
3192 ++
3193 ++static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
3194 ++{
3195 ++ return write_pool_user(iter);
3196 ++}
3197 +
3198 +- mix_pool_bytes(buf, bytes);
3199 +- cond_resched();
3200 ++static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
3201 ++{
3202 ++ static int maxwarn = 10;
3203 ++
3204 ++ if (!crng_ready()) {
3205 ++ if (!ratelimit_disable && maxwarn <= 0)
3206 ++ ++urandom_warning.missed;
3207 ++ else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
3208 ++ --maxwarn;
3209 ++ pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
3210 ++ current->comm, iov_iter_count(iter));
3211 ++ }
3212 + }
3213 +
3214 +- return 0;
3215 ++ return get_random_bytes_user(iter);
3216 + }
3217 +
3218 +-static ssize_t random_write(struct file *file, const char __user *buffer,
3219 +- size_t count, loff_t *ppos)
3220 ++static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
3221 + {
3222 +- size_t ret;
3223 ++ int ret;
3224 +
3225 +- ret = write_pool(buffer, count);
3226 +- if (ret)
3227 ++ ret = wait_for_random_bytes();
3228 ++ if (ret != 0)
3229 + return ret;
3230 +-
3231 +- return (ssize_t)count;
3232 ++ return get_random_bytes_user(iter);
3233 + }
3234 +
3235 + static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3236 + {
3237 +- int size, ent_count;
3238 + int __user *p = (int __user *)arg;
3239 +- int retval;
3240 ++ int ent_count;
3241 +
3242 + switch (cmd) {
3243 + case RNDGETENTCNT:
3244 +- /* inherently racy, no point locking */
3245 +- ent_count = POOL_ENTROPY_BITS();
3246 +- if (put_user(ent_count, p))
3247 ++ /* Inherently racy, no point locking. */
3248 ++ if (put_user(input_pool.init_bits, p))
3249 + return -EFAULT;
3250 + return 0;
3251 + case RNDADDTOENTCNT:
3252 +@@ -1834,40 +1329,48 @@ static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
3253 + return -EPERM;
3254 + if (get_user(ent_count, p))
3255 + return -EFAULT;
3256 +- return credit_entropy_bits_safe(ent_count);
3257 +- case RNDADDENTROPY:
3258 ++ if (ent_count < 0)
3259 ++ return -EINVAL;
3260 ++ credit_init_bits(ent_count);
3261 ++ return 0;
3262 ++ case RNDADDENTROPY: {
3263 ++ struct iov_iter iter;
3264 ++ struct iovec iov;
3265 ++ ssize_t ret;
3266 ++ int len;
3267 ++
3268 + if (!capable(CAP_SYS_ADMIN))
3269 + return -EPERM;
3270 + if (get_user(ent_count, p++))
3271 + return -EFAULT;
3272 + if (ent_count < 0)
3273 + return -EINVAL;
3274 +- if (get_user(size, p++))
3275 ++ if (get_user(len, p++))
3276 ++ return -EFAULT;
3277 ++ ret = import_single_range(WRITE, p, len, &iov, &iter);
3278 ++ if (unlikely(ret))
3279 ++ return ret;
3280 ++ ret = write_pool_user(&iter);
3281 ++ if (unlikely(ret < 0))
3282 ++ return ret;
3283 ++ /* Since we're crediting, enforce that it was all written into the pool. */
3284 ++ if (unlikely(ret != len))
3285 + return -EFAULT;
3286 +- retval = write_pool((const char __user *)p, size);
3287 +- if (retval < 0)
3288 +- return retval;
3289 +- return credit_entropy_bits_safe(ent_count);
3290 ++ credit_init_bits(ent_count);
3291 ++ return 0;
3292 ++ }
3293 + case RNDZAPENTCNT:
3294 + case RNDCLEARPOOL:
3295 +- /*
3296 +- * Clear the entropy pool counters. We no longer clear
3297 +- * the entropy pool, as that's silly.
3298 +- */
3299 ++ /* No longer has any effect. */
3300 + if (!capable(CAP_SYS_ADMIN))
3301 + return -EPERM;
3302 +- if (xchg(&input_pool.entropy_count, 0) && random_write_wakeup_bits) {
3303 +- wake_up_interruptible(&random_write_wait);
3304 +- kill_fasync(&fasync, SIGIO, POLL_OUT);
3305 +- }
3306 + return 0;
3307 + case RNDRESEEDCRNG:
3308 + if (!capable(CAP_SYS_ADMIN))
3309 + return -EPERM;
3310 +- if (crng_init < 2)
3311 ++ if (!crng_ready())
3312 + return -ENODATA;
3313 +- crng_reseed(&primary_crng, true);
3314 +- WRITE_ONCE(crng_global_init_time, jiffies - 1);
3315 ++ crng_reseed();
3316 + return 0;
3317 + default:
3318 + return -EINVAL;
3319 +@@ -1880,55 +1383,56 @@ static int random_fasync(int fd, struct file *filp, int on)
3320 + }
3321 +
3322 + const struct file_operations random_fops = {
3323 +- .read = random_read,
3324 +- .write = random_write,
3325 ++ .read_iter = random_read_iter,
3326 ++ .write_iter = random_write_iter,
3327 + .poll = random_poll,
3328 + .unlocked_ioctl = random_ioctl,
3329 + .compat_ioctl = compat_ptr_ioctl,
3330 + .fasync = random_fasync,
3331 + .llseek = noop_llseek,
3332 ++ .splice_read = generic_file_splice_read,
3333 ++ .splice_write = iter_file_splice_write,
3334 + };
3335 +
3336 + const struct file_operations urandom_fops = {
3337 +- .read = urandom_read,
3338 +- .write = random_write,
3339 ++ .read_iter = urandom_read_iter,
3340 ++ .write_iter = random_write_iter,
3341 + .unlocked_ioctl = random_ioctl,
3342 + .compat_ioctl = compat_ptr_ioctl,
3343 + .fasync = random_fasync,
3344 + .llseek = noop_llseek,
3345 ++ .splice_read = generic_file_splice_read,
3346 ++ .splice_write = iter_file_splice_write,
3347 + };
3348 +
3349 +-SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
3350 +- flags)
3351 +-{
3352 +- int ret;
3353 +-
3354 +- if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
3355 +- return -EINVAL;
3356 +-
3357 +- /*
3358 +- * Requesting insecure and blocking randomness at the same time makes
3359 +- * no sense.
3360 +- */
3361 +- if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
3362 +- return -EINVAL;
3363 +-
3364 +- if (count > INT_MAX)
3365 +- count = INT_MAX;
3366 +-
3367 +- if (!(flags & GRND_INSECURE) && !crng_ready()) {
3368 +- if (flags & GRND_NONBLOCK)
3369 +- return -EAGAIN;
3370 +- ret = wait_for_random_bytes();
3371 +- if (unlikely(ret))
3372 +- return ret;
3373 +- }
3374 +- return urandom_read_nowarn(NULL, buf, count, NULL);
3375 +-}
3376 +
3377 + /********************************************************************
3378 + *
3379 +- * Sysctl interface
3380 ++ * Sysctl interface.
3381 ++ *
3382 ++ * These are partly unused legacy knobs with dummy values to not break
3383 ++ * userspace and partly still useful things. They are usually accessible
3384 ++ * in /proc/sys/kernel/random/ and are as follows:
3385 ++ *
3386 ++ * - boot_id - a UUID representing the current boot.
3387 ++ *
3388 ++ * - uuid - a random UUID, different each time the file is read.
3389 ++ *
3390 ++ * - poolsize - the number of bits of entropy that the input pool can
3391 ++ * hold, tied to the POOL_BITS constant.
3392 ++ *
3393 ++ * - entropy_avail - the number of bits of entropy currently in the
3394 ++ * input pool. Always <= poolsize.
3395 ++ *
3396 ++ * - write_wakeup_threshold - the amount of entropy in the input pool
3397 ++ * below which write polls to /dev/random will unblock, requesting
3398 ++ * more entropy, tied to the POOL_READY_BITS constant. It is writable
3399 ++ * to avoid breaking old userspaces, but writing to it does not
3400 ++ * change any behavior of the RNG.
3401 ++ *
3402 ++ * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
3403 ++ * It is writable to avoid breaking old userspaces, but writing
3404 ++ * to it does not change any behavior of the RNG.
3405 + *
3406 + ********************************************************************/
3407 +
3408 +@@ -1936,25 +1440,28 @@ SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
3409 +
3410 + #include <linux/sysctl.h>
3411 +
3412 +-static int min_write_thresh;
3413 +-static int max_write_thresh = POOL_BITS;
3414 +-static int random_min_urandom_seed = 60;
3415 +-static char sysctl_bootid[16];
3416 ++static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
3417 ++static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
3418 ++static int sysctl_poolsize = POOL_BITS;
3419 ++static u8 sysctl_bootid[UUID_SIZE];
3420 +
3421 + /*
3422 + * This function is used to return both the bootid UUID, and random
3423 +- * UUID. The difference is in whether table->data is NULL; if it is,
3424 ++ * UUID. The difference is in whether table->data is NULL; if it is,
3425 + * then a new UUID is generated and returned to the user.
3426 +- *
3427 +- * If the user accesses this via the proc interface, the UUID will be
3428 +- * returned as an ASCII string in the standard UUID format; if via the
3429 +- * sysctl system call, as 16 bytes of binary data.
3430 + */
3431 +-static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
3432 ++static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
3433 + size_t *lenp, loff_t *ppos)
3434 + {
3435 +- struct ctl_table fake_table;
3436 +- unsigned char buf[64], tmp_uuid[16], *uuid;
3437 ++ u8 tmp_uuid[UUID_SIZE], *uuid;
3438 ++ char uuid_string[UUID_STRING_LEN + 1];
3439 ++ struct ctl_table fake_table = {
3440 ++ .data = uuid_string,
3441 ++ .maxlen = UUID_STRING_LEN
3442 ++ };
3443 ++
3444 ++ if (write)
3445 ++ return -EPERM;
3446 +
3447 + uuid = table->data;
3448 + if (!uuid) {
3449 +@@ -1969,32 +1476,17 @@ static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
3450 + spin_unlock(&bootid_spinlock);
3451 + }
3452 +
3453 +- sprintf(buf, "%pU", uuid);
3454 +-
3455 +- fake_table.data = buf;
3456 +- fake_table.maxlen = sizeof(buf);
3457 +-
3458 +- return proc_dostring(&fake_table, write, buffer, lenp, ppos);
3459 ++ snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
3460 ++ return proc_dostring(&fake_table, 0, buf, lenp, ppos);
3461 + }
3462 +
3463 +-/*
3464 +- * Return entropy available scaled to integral bits
3465 +- */
3466 +-static int proc_do_entropy(struct ctl_table *table, int write, void *buffer,
3467 +- size_t *lenp, loff_t *ppos)
3468 ++/* The same as proc_dointvec, but writes don't change anything. */
3469 ++static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
3470 ++ size_t *lenp, loff_t *ppos)
3471 + {
3472 +- struct ctl_table fake_table;
3473 +- int entropy_count;
3474 +-
3475 +- entropy_count = *(int *)table->data >> POOL_ENTROPY_SHIFT;
3476 +-
3477 +- fake_table.data = &entropy_count;
3478 +- fake_table.maxlen = sizeof(entropy_count);
3479 +-
3480 +- return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
3481 ++ return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
3482 + }
3483 +
3484 +-static int sysctl_poolsize = POOL_BITS;
3485 + static struct ctl_table random_table[] = {
3486 + {
3487 + .procname = "poolsize",
3488 +@@ -2005,62 +1497,42 @@ static struct ctl_table random_table[] = {
3489 + },
3490 + {
3491 + .procname = "entropy_avail",
3492 ++ .data = &input_pool.init_bits,
3493 + .maxlen = sizeof(int),
3494 + .mode = 0444,
3495 +- .proc_handler = proc_do_entropy,
3496 +- .data = &input_pool.entropy_count,
3497 ++ .proc_handler = proc_dointvec,
3498 + },
3499 + {
3500 + .procname = "write_wakeup_threshold",
3501 +- .data = &random_write_wakeup_bits,
3502 ++ .data = &sysctl_random_write_wakeup_bits,
3503 + .maxlen = sizeof(int),
3504 + .mode = 0644,
3505 +- .proc_handler = proc_dointvec_minmax,
3506 +- .extra1 = &min_write_thresh,
3507 +- .extra2 = &max_write_thresh,
3508 ++ .proc_handler = proc_do_rointvec,
3509 + },
3510 + {
3511 + .procname = "urandom_min_reseed_secs",
3512 +- .data = &random_min_urandom_seed,
3513 ++ .data = &sysctl_random_min_urandom_seed,
3514 + .maxlen = sizeof(int),
3515 + .mode = 0644,
3516 +- .proc_handler = proc_dointvec,
3517 ++ .proc_handler = proc_do_rointvec,
3518 + },
3519 + {
3520 + .procname = "boot_id",
3521 + .data = &sysctl_bootid,
3522 +- .maxlen = 16,
3523 + .mode = 0444,
3524 + .proc_handler = proc_do_uuid,
3525 + },
3526 + {
3527 + .procname = "uuid",
3528 +- .maxlen = 16,
3529 + .mode = 0444,
3530 + .proc_handler = proc_do_uuid,
3531 + },
3532 +-#ifdef ADD_INTERRUPT_BENCH
3533 +- {
3534 +- .procname = "add_interrupt_avg_cycles",
3535 +- .data = &avg_cycles,
3536 +- .maxlen = sizeof(avg_cycles),
3537 +- .mode = 0444,
3538 +- .proc_handler = proc_doulongvec_minmax,
3539 +- },
3540 +- {
3541 +- .procname = "add_interrupt_avg_deviation",
3542 +- .data = &avg_deviation,
3543 +- .maxlen = sizeof(avg_deviation),
3544 +- .mode = 0444,
3545 +- .proc_handler = proc_doulongvec_minmax,
3546 +- },
3547 +-#endif
3548 + { }
3549 + };
3550 +
3551 + /*
3552 +- * rand_initialize() is called before sysctl_init(),
3553 +- * so we cannot call register_sysctl_init() in rand_initialize()
3554 ++ * random_init() is called before sysctl_init(),
3555 ++ * so we cannot call register_sysctl_init() in random_init()
3556 + */
3557 + static int __init random_sysctls_init(void)
3558 + {
3559 +@@ -2068,170 +1540,4 @@ static int __init random_sysctls_init(void)
3560 + return 0;
3561 + }
3562 + device_initcall(random_sysctls_init);
3563 +-#endif /* CONFIG_SYSCTL */
3564 +-
3565 +-struct batched_entropy {
3566 +- union {
3567 +- u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
3568 +- u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
3569 +- };
3570 +- unsigned int position;
3571 +- spinlock_t batch_lock;
3572 +-};
3573 +-
3574 +-/*
3575 +- * Get a random word for internal kernel use only. The quality of the random
3576 +- * number is good as /dev/urandom, but there is no backtrack protection, with
3577 +- * the goal of being quite fast and not depleting entropy. In order to ensure
3578 +- * that the randomness provided by this function is okay, the function
3579 +- * wait_for_random_bytes() should be called and return 0 at least once at any
3580 +- * point prior.
3581 +- */
3582 +-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
3583 +- .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
3584 +-};
3585 +-
3586 +-u64 get_random_u64(void)
3587 +-{
3588 +- u64 ret;
3589 +- unsigned long flags;
3590 +- struct batched_entropy *batch;
3591 +- static void *previous;
3592 +-
3593 +- warn_unseeded_randomness(&previous);
3594 +-
3595 +- batch = raw_cpu_ptr(&batched_entropy_u64);
3596 +- spin_lock_irqsave(&batch->batch_lock, flags);
3597 +- if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
3598 +- extract_crng((u8 *)batch->entropy_u64);
3599 +- batch->position = 0;
3600 +- }
3601 +- ret = batch->entropy_u64[batch->position++];
3602 +- spin_unlock_irqrestore(&batch->batch_lock, flags);
3603 +- return ret;
3604 +-}
3605 +-EXPORT_SYMBOL(get_random_u64);
3606 +-
3607 +-static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
3608 +- .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
3609 +-};
3610 +-u32 get_random_u32(void)
3611 +-{
3612 +- u32 ret;
3613 +- unsigned long flags;
3614 +- struct batched_entropy *batch;
3615 +- static void *previous;
3616 +-
3617 +- warn_unseeded_randomness(&previous);
3618 +-
3619 +- batch = raw_cpu_ptr(&batched_entropy_u32);
3620 +- spin_lock_irqsave(&batch->batch_lock, flags);
3621 +- if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
3622 +- extract_crng((u8 *)batch->entropy_u32);
3623 +- batch->position = 0;
3624 +- }
3625 +- ret = batch->entropy_u32[batch->position++];
3626 +- spin_unlock_irqrestore(&batch->batch_lock, flags);
3627 +- return ret;
3628 +-}
3629 +-EXPORT_SYMBOL(get_random_u32);
3630 +-
3631 +-/* It's important to invalidate all potential batched entropy that might
3632 +- * be stored before the crng is initialized, which we can do lazily by
3633 +- * simply resetting the counter to zero so that it's re-extracted on the
3634 +- * next usage. */
3635 +-static void invalidate_batched_entropy(void)
3636 +-{
3637 +- int cpu;
3638 +- unsigned long flags;
3639 +-
3640 +- for_each_possible_cpu(cpu) {
3641 +- struct batched_entropy *batched_entropy;
3642 +-
3643 +- batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
3644 +- spin_lock_irqsave(&batched_entropy->batch_lock, flags);
3645 +- batched_entropy->position = 0;
3646 +- spin_unlock(&batched_entropy->batch_lock);
3647 +-
3648 +- batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
3649 +- spin_lock(&batched_entropy->batch_lock);
3650 +- batched_entropy->position = 0;
3651 +- spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
3652 +- }
3653 +-}
3654 +-
3655 +-/**
3656 +- * randomize_page - Generate a random, page aligned address
3657 +- * @start: The smallest acceptable address the caller will take.
3658 +- * @range: The size of the area, starting at @start, within which the
3659 +- * random address must fall.
3660 +- *
3661 +- * If @start + @range would overflow, @range is capped.
3662 +- *
3663 +- * NOTE: Historical use of randomize_range, which this replaces, presumed that
3664 +- * @start was already page aligned. We now align it regardless.
3665 +- *
3666 +- * Return: A page aligned address within [start, start + range). On error,
3667 +- * @start is returned.
3668 +- */
3669 +-unsigned long randomize_page(unsigned long start, unsigned long range)
3670 +-{
3671 +- if (!PAGE_ALIGNED(start)) {
3672 +- range -= PAGE_ALIGN(start) - start;
3673 +- start = PAGE_ALIGN(start);
3674 +- }
3675 +-
3676 +- if (start > ULONG_MAX - range)
3677 +- range = ULONG_MAX - start;
3678 +-
3679 +- range >>= PAGE_SHIFT;
3680 +-
3681 +- if (range == 0)
3682 +- return start;
3683 +-
3684 +- return start + (get_random_long() % range << PAGE_SHIFT);
3685 +-}
3686 +-
3687 +-/* Interface for in-kernel drivers of true hardware RNGs.
3688 +- * Those devices may produce endless random bits and will be throttled
3689 +- * when our pool is full.
3690 +- */
3691 +-void add_hwgenerator_randomness(const char *buffer, size_t count,
3692 +- size_t entropy)
3693 +-{
3694 +- if (unlikely(crng_init == 0)) {
3695 +- size_t ret = crng_fast_load(buffer, count);
3696 +- mix_pool_bytes(buffer, ret);
3697 +- count -= ret;
3698 +- buffer += ret;
3699 +- if (!count || crng_init == 0)
3700 +- return;
3701 +- }
3702 +-
3703 +- /* Throttle writing if we're above the trickle threshold.
3704 +- * We'll be woken up again once below random_write_wakeup_thresh,
3705 +- * when the calling thread is about to terminate, or once
3706 +- * CRNG_RESEED_INTERVAL has lapsed.
3707 +- */
3708 +- wait_event_interruptible_timeout(random_write_wait,
3709 +- !system_wq || kthread_should_stop() ||
3710 +- POOL_ENTROPY_BITS() <= random_write_wakeup_bits,
3711 +- CRNG_RESEED_INTERVAL);
3712 +- mix_pool_bytes(buffer, count);
3713 +- credit_entropy_bits(entropy);
3714 +-}
3715 +-EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
3716 +-
3717 +-/* Handle random seed passed by bootloader.
3718 +- * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
3719 +- * it would be regarded as device data.
3720 +- * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
3721 +- */
3722 +-void add_bootloader_randomness(const void *buf, unsigned int size)
3723 +-{
3724 +- if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
3725 +- add_hwgenerator_randomness(buf, size, size * 8);
3726 +- else
3727 +- add_device_randomness(buf, size);
3728 +-}
3729 +-EXPORT_SYMBOL_GPL(add_bootloader_randomness);
3730 ++#endif
3731 +diff --git a/drivers/hid/amd-sfh-hid/amd_sfh_client.c b/drivers/hid/amd-sfh-hid/amd_sfh_client.c
3732 +index c5de0ec4f9d03..444acd9e2cd6a 100644
3733 +--- a/drivers/hid/amd-sfh-hid/amd_sfh_client.c
3734 ++++ b/drivers/hid/amd-sfh-hid/amd_sfh_client.c
3735 +@@ -227,6 +227,17 @@ int amd_sfh_hid_client_init(struct amd_mp2_dev *privdata)
3736 + dev_dbg(dev, "sid 0x%x status 0x%x\n",
3737 + cl_data->sensor_idx[i], cl_data->sensor_sts[i]);
3738 + }
3739 ++ if (privdata->mp2_ops->discovery_status &&
3740 ++ privdata->mp2_ops->discovery_status(privdata) == 0) {
3741 ++ amd_sfh_hid_client_deinit(privdata);
3742 ++ for (i = 0; i < cl_data->num_hid_devices; i++) {
3743 ++ devm_kfree(dev, cl_data->feature_report[i]);
3744 ++ devm_kfree(dev, in_data->input_report[i]);
3745 ++ devm_kfree(dev, cl_data->report_descr[i]);
3746 ++ }
3747 ++ dev_warn(dev, "Failed to discover, sensors not enabled\n");
3748 ++ return -EOPNOTSUPP;
3749 ++ }
3750 + schedule_delayed_work(&cl_data->work_buffer, msecs_to_jiffies(AMD_SFH_IDLE_LOOP));
3751 + return 0;
3752 +
3753 +diff --git a/drivers/hid/amd-sfh-hid/amd_sfh_pcie.c b/drivers/hid/amd-sfh-hid/amd_sfh_pcie.c
3754 +index 19fa734a9a793..abd7f65860958 100644
3755 +--- a/drivers/hid/amd-sfh-hid/amd_sfh_pcie.c
3756 ++++ b/drivers/hid/amd-sfh-hid/amd_sfh_pcie.c
3757 +@@ -130,6 +130,12 @@ static int amd_sfh_irq_init_v2(struct amd_mp2_dev *privdata)
3758 + return 0;
3759 + }
3760 +
3761 ++static int amd_sfh_dis_sts_v2(struct amd_mp2_dev *privdata)
3762 ++{
3763 ++ return (readl(privdata->mmio + AMD_P2C_MSG(1)) &
3764 ++ SENSOR_DISCOVERY_STATUS_MASK) >> SENSOR_DISCOVERY_STATUS_SHIFT;
3765 ++}
3766 ++
3767 + void amd_start_sensor(struct amd_mp2_dev *privdata, struct amd_mp2_sensor_info info)
3768 + {
3769 + union sfh_cmd_param cmd_param;
3770 +@@ -245,6 +251,7 @@ static const struct amd_mp2_ops amd_sfh_ops_v2 = {
3771 + .response = amd_sfh_wait_response_v2,
3772 + .clear_intr = amd_sfh_clear_intr_v2,
3773 + .init_intr = amd_sfh_irq_init_v2,
3774 ++ .discovery_status = amd_sfh_dis_sts_v2,
3775 + };
3776 +
3777 + static const struct amd_mp2_ops amd_sfh_ops = {
3778 +diff --git a/drivers/hid/amd-sfh-hid/amd_sfh_pcie.h b/drivers/hid/amd-sfh-hid/amd_sfh_pcie.h
3779 +index 97b99861fae25..9aa88a91ac8d1 100644
3780 +--- a/drivers/hid/amd-sfh-hid/amd_sfh_pcie.h
3781 ++++ b/drivers/hid/amd-sfh-hid/amd_sfh_pcie.h
3782 +@@ -39,6 +39,9 @@
3783 +
3784 + #define AMD_SFH_IDLE_LOOP 200
3785 +
3786 ++#define SENSOR_DISCOVERY_STATUS_MASK GENMASK(5, 3)
3787 ++#define SENSOR_DISCOVERY_STATUS_SHIFT 3
3788 ++
3789 + /* SFH Command register */
3790 + union sfh_cmd_base {
3791 + u32 ul;
3792 +@@ -143,5 +146,6 @@ struct amd_mp2_ops {
3793 + int (*response)(struct amd_mp2_dev *mp2, u8 sid, u32 sensor_sts);
3794 + void (*clear_intr)(struct amd_mp2_dev *privdata);
3795 + int (*init_intr)(struct amd_mp2_dev *privdata);
3796 ++ int (*discovery_status)(struct amd_mp2_dev *privdata);
3797 + };
3798 + #endif
3799 +diff --git a/include/linux/cpuhotplug.h b/include/linux/cpuhotplug.h
3800 +index 411a428ace4d4..481e565cc5c42 100644
3801 +--- a/include/linux/cpuhotplug.h
3802 ++++ b/include/linux/cpuhotplug.h
3803 +@@ -100,6 +100,7 @@ enum cpuhp_state {
3804 + CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
3805 + CPUHP_PADATA_DEAD,
3806 + CPUHP_AP_DTPM_CPU_DEAD,
3807 ++ CPUHP_RANDOM_PREPARE,
3808 + CPUHP_WORKQUEUE_PREP,
3809 + CPUHP_POWER_NUMA_PREPARE,
3810 + CPUHP_HRTIMERS_PREPARE,
3811 +@@ -240,6 +241,7 @@ enum cpuhp_state {
3812 + CPUHP_AP_PERF_CSKY_ONLINE,
3813 + CPUHP_AP_WATCHDOG_ONLINE,
3814 + CPUHP_AP_WORKQUEUE_ONLINE,
3815 ++ CPUHP_AP_RANDOM_ONLINE,
3816 + CPUHP_AP_RCUTREE_ONLINE,
3817 + CPUHP_AP_BASE_CACHEINFO_ONLINE,
3818 + CPUHP_AP_ONLINE_DYN,
3819 +diff --git a/include/linux/hw_random.h b/include/linux/hw_random.h
3820 +index 8e6dd908da216..aa1d4da03538b 100644
3821 +--- a/include/linux/hw_random.h
3822 ++++ b/include/linux/hw_random.h
3823 +@@ -60,7 +60,5 @@ extern int devm_hwrng_register(struct device *dev, struct hwrng *rng);
3824 + /** Unregister a Hardware Random Number Generator driver. */
3825 + extern void hwrng_unregister(struct hwrng *rng);
3826 + extern void devm_hwrng_unregister(struct device *dve, struct hwrng *rng);
3827 +-/** Feed random bits into the pool. */
3828 +-extern void add_hwgenerator_randomness(const char *buffer, size_t count, size_t entropy);
3829 +
3830 + #endif /* LINUX_HWRANDOM_H_ */
3831 +diff --git a/include/linux/mm.h b/include/linux/mm.h
3832 +index 5744a3fc47169..9cb0ff065e8b1 100644
3833 +--- a/include/linux/mm.h
3834 ++++ b/include/linux/mm.h
3835 +@@ -2678,6 +2678,7 @@ extern int install_special_mapping(struct mm_struct *mm,
3836 + unsigned long flags, struct page **pages);
3837 +
3838 + unsigned long randomize_stack_top(unsigned long stack_top);
3839 ++unsigned long randomize_page(unsigned long start, unsigned long range);
3840 +
3841 + extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3842 +
3843 +diff --git a/include/linux/prandom.h b/include/linux/prandom.h
3844 +index 056d31317e499..a4aadd2dc153e 100644
3845 +--- a/include/linux/prandom.h
3846 ++++ b/include/linux/prandom.h
3847 +@@ -10,6 +10,7 @@
3848 +
3849 + #include <linux/types.h>
3850 + #include <linux/percpu.h>
3851 ++#include <linux/siphash.h>
3852 +
3853 + u32 prandom_u32(void);
3854 + void prandom_bytes(void *buf, size_t nbytes);
3855 +@@ -27,15 +28,10 @@ DECLARE_PER_CPU(unsigned long, net_rand_noise);
3856 + * The core SipHash round function. Each line can be executed in
3857 + * parallel given enough CPU resources.
3858 + */
3859 +-#define PRND_SIPROUND(v0, v1, v2, v3) ( \
3860 +- v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \
3861 +- v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \
3862 +- v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \
3863 +- v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \
3864 +-)
3865 ++#define PRND_SIPROUND(v0, v1, v2, v3) SIPHASH_PERMUTATION(v0, v1, v2, v3)
3866 +
3867 +-#define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261)
3868 +-#define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573)
3869 ++#define PRND_K0 (SIPHASH_CONST_0 ^ SIPHASH_CONST_2)
3870 ++#define PRND_K1 (SIPHASH_CONST_1 ^ SIPHASH_CONST_3)
3871 +
3872 + #elif BITS_PER_LONG == 32
3873 + /*
3874 +@@ -43,14 +39,9 @@ DECLARE_PER_CPU(unsigned long, net_rand_noise);
3875 + * This is weaker, but 32-bit machines are not used for high-traffic
3876 + * applications, so there is less output for an attacker to analyze.
3877 + */
3878 +-#define PRND_SIPROUND(v0, v1, v2, v3) ( \
3879 +- v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \
3880 +- v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \
3881 +- v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \
3882 +- v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \
3883 +-)
3884 +-#define PRND_K0 0x6c796765
3885 +-#define PRND_K1 0x74656462
3886 ++#define PRND_SIPROUND(v0, v1, v2, v3) HSIPHASH_PERMUTATION(v0, v1, v2, v3)
3887 ++#define PRND_K0 (HSIPHASH_CONST_0 ^ HSIPHASH_CONST_2)
3888 ++#define PRND_K1 (HSIPHASH_CONST_1 ^ HSIPHASH_CONST_3)
3889 +
3890 + #else
3891 + #error Unsupported BITS_PER_LONG
3892 +diff --git a/include/linux/random.h b/include/linux/random.h
3893 +index c45b2693e51fb..917470c4490ac 100644
3894 +--- a/include/linux/random.h
3895 ++++ b/include/linux/random.h
3896 +@@ -1,9 +1,5 @@
3897 + /* SPDX-License-Identifier: GPL-2.0 */
3898 +-/*
3899 +- * include/linux/random.h
3900 +- *
3901 +- * Include file for the random number generator.
3902 +- */
3903 ++
3904 + #ifndef _LINUX_RANDOM_H
3905 + #define _LINUX_RANDOM_H
3906 +
3907 +@@ -14,41 +10,26 @@
3908 +
3909 + #include <uapi/linux/random.h>
3910 +
3911 +-struct random_ready_callback {
3912 +- struct list_head list;
3913 +- void (*func)(struct random_ready_callback *rdy);
3914 +- struct module *owner;
3915 +-};
3916 ++struct notifier_block;
3917 +
3918 +-extern void add_device_randomness(const void *, unsigned int);
3919 +-extern void add_bootloader_randomness(const void *, unsigned int);
3920 ++void add_device_randomness(const void *buf, size_t len);
3921 ++void add_bootloader_randomness(const void *buf, size_t len);
3922 ++void add_input_randomness(unsigned int type, unsigned int code,
3923 ++ unsigned int value) __latent_entropy;
3924 ++void add_interrupt_randomness(int irq) __latent_entropy;
3925 ++void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
3926 +
3927 + #if defined(LATENT_ENTROPY_PLUGIN) && !defined(__CHECKER__)
3928 + static inline void add_latent_entropy(void)
3929 + {
3930 +- add_device_randomness((const void *)&latent_entropy,
3931 +- sizeof(latent_entropy));
3932 ++ add_device_randomness((const void *)&latent_entropy, sizeof(latent_entropy));
3933 + }
3934 + #else
3935 +-static inline void add_latent_entropy(void) {}
3936 +-#endif
3937 +-
3938 +-extern void add_input_randomness(unsigned int type, unsigned int code,
3939 +- unsigned int value) __latent_entropy;
3940 +-extern void add_interrupt_randomness(int irq) __latent_entropy;
3941 +-
3942 +-extern void get_random_bytes(void *buf, int nbytes);
3943 +-extern int wait_for_random_bytes(void);
3944 +-extern int __init rand_initialize(void);
3945 +-extern bool rng_is_initialized(void);
3946 +-extern int add_random_ready_callback(struct random_ready_callback *rdy);
3947 +-extern void del_random_ready_callback(struct random_ready_callback *rdy);
3948 +-extern int __must_check get_random_bytes_arch(void *buf, int nbytes);
3949 +-
3950 +-#ifndef MODULE
3951 +-extern const struct file_operations random_fops, urandom_fops;
3952 ++static inline void add_latent_entropy(void) { }
3953 + #endif
3954 +
3955 ++void get_random_bytes(void *buf, size_t len);
3956 ++size_t __must_check get_random_bytes_arch(void *buf, size_t len);
3957 + u32 get_random_u32(void);
3958 + u64 get_random_u64(void);
3959 + static inline unsigned int get_random_int(void)
3960 +@@ -80,36 +61,38 @@ static inline unsigned long get_random_long(void)
3961 +
3962 + static inline unsigned long get_random_canary(void)
3963 + {
3964 +- unsigned long val = get_random_long();
3965 +-
3966 +- return val & CANARY_MASK;
3967 ++ return get_random_long() & CANARY_MASK;
3968 + }
3969 +
3970 ++int __init random_init(const char *command_line);
3971 ++bool rng_is_initialized(void);
3972 ++int wait_for_random_bytes(void);
3973 ++int register_random_ready_notifier(struct notifier_block *nb);
3974 ++int unregister_random_ready_notifier(struct notifier_block *nb);
3975 ++
3976 + /* Calls wait_for_random_bytes() and then calls get_random_bytes(buf, nbytes).
3977 + * Returns the result of the call to wait_for_random_bytes. */
3978 +-static inline int get_random_bytes_wait(void *buf, int nbytes)
3979 ++static inline int get_random_bytes_wait(void *buf, size_t nbytes)
3980 + {
3981 + int ret = wait_for_random_bytes();
3982 + get_random_bytes(buf, nbytes);
3983 + return ret;
3984 + }
3985 +
3986 +-#define declare_get_random_var_wait(var) \
3987 +- static inline int get_random_ ## var ## _wait(var *out) { \
3988 ++#define declare_get_random_var_wait(name, ret_type) \
3989 ++ static inline int get_random_ ## name ## _wait(ret_type *out) { \
3990 + int ret = wait_for_random_bytes(); \
3991 + if (unlikely(ret)) \
3992 + return ret; \
3993 +- *out = get_random_ ## var(); \
3994 ++ *out = get_random_ ## name(); \
3995 + return 0; \
3996 + }
3997 +-declare_get_random_var_wait(u32)
3998 +-declare_get_random_var_wait(u64)
3999 +-declare_get_random_var_wait(int)
4000 +-declare_get_random_var_wait(long)
4001 ++declare_get_random_var_wait(u32, u32)
4002 ++declare_get_random_var_wait(u64, u32)
4003 ++declare_get_random_var_wait(int, unsigned int)
4004 ++declare_get_random_var_wait(long, unsigned long)
4005 + #undef declare_get_random_var
4006 +
4007 +-unsigned long randomize_page(unsigned long start, unsigned long range);
4008 +-
4009 + /*
4010 + * This is designed to be standalone for just prandom
4011 + * users, but for now we include it from <linux/random.h>
4012 +@@ -120,22 +103,10 @@ unsigned long randomize_page(unsigned long start, unsigned long range);
4013 + #ifdef CONFIG_ARCH_RANDOM
4014 + # include <asm/archrandom.h>
4015 + #else
4016 +-static inline bool __must_check arch_get_random_long(unsigned long *v)
4017 +-{
4018 +- return false;
4019 +-}
4020 +-static inline bool __must_check arch_get_random_int(unsigned int *v)
4021 +-{
4022 +- return false;
4023 +-}
4024 +-static inline bool __must_check arch_get_random_seed_long(unsigned long *v)
4025 +-{
4026 +- return false;
4027 +-}
4028 +-static inline bool __must_check arch_get_random_seed_int(unsigned int *v)
4029 +-{
4030 +- return false;
4031 +-}
4032 ++static inline bool __must_check arch_get_random_long(unsigned long *v) { return false; }
4033 ++static inline bool __must_check arch_get_random_int(unsigned int *v) { return false; }
4034 ++static inline bool __must_check arch_get_random_seed_long(unsigned long *v) { return false; }
4035 ++static inline bool __must_check arch_get_random_seed_int(unsigned int *v) { return false; }
4036 + #endif
4037 +
4038 + /*
4039 +@@ -158,4 +129,13 @@ static inline bool __init arch_get_random_long_early(unsigned long *v)
4040 + }
4041 + #endif
4042 +
4043 ++#ifdef CONFIG_SMP
4044 ++int random_prepare_cpu(unsigned int cpu);
4045 ++int random_online_cpu(unsigned int cpu);
4046 ++#endif
4047 ++
4048 ++#ifndef MODULE
4049 ++extern const struct file_operations random_fops, urandom_fops;
4050 ++#endif
4051 ++
4052 + #endif /* _LINUX_RANDOM_H */
4053 +diff --git a/include/linux/siphash.h b/include/linux/siphash.h
4054 +index cce8a9acc76cb..3af1428da5597 100644
4055 +--- a/include/linux/siphash.h
4056 ++++ b/include/linux/siphash.h
4057 +@@ -138,4 +138,32 @@ static inline u32 hsiphash(const void *data, size_t len,
4058 + return ___hsiphash_aligned(data, len, key);
4059 + }
4060 +
4061 ++/*
4062 ++ * These macros expose the raw SipHash and HalfSipHash permutations.
4063 ++ * Do not use them directly! If you think you have a use for them,
4064 ++ * be sure to CC the maintainer of this file explaining why.
4065 ++ */
4066 ++
4067 ++#define SIPHASH_PERMUTATION(a, b, c, d) ( \
4068 ++ (a) += (b), (b) = rol64((b), 13), (b) ^= (a), (a) = rol64((a), 32), \
4069 ++ (c) += (d), (d) = rol64((d), 16), (d) ^= (c), \
4070 ++ (a) += (d), (d) = rol64((d), 21), (d) ^= (a), \
4071 ++ (c) += (b), (b) = rol64((b), 17), (b) ^= (c), (c) = rol64((c), 32))
4072 ++
4073 ++#define SIPHASH_CONST_0 0x736f6d6570736575ULL
4074 ++#define SIPHASH_CONST_1 0x646f72616e646f6dULL
4075 ++#define SIPHASH_CONST_2 0x6c7967656e657261ULL
4076 ++#define SIPHASH_CONST_3 0x7465646279746573ULL
4077 ++
4078 ++#define HSIPHASH_PERMUTATION(a, b, c, d) ( \
4079 ++ (a) += (b), (b) = rol32((b), 5), (b) ^= (a), (a) = rol32((a), 16), \
4080 ++ (c) += (d), (d) = rol32((d), 8), (d) ^= (c), \
4081 ++ (a) += (d), (d) = rol32((d), 7), (d) ^= (a), \
4082 ++ (c) += (b), (b) = rol32((b), 13), (b) ^= (c), (c) = rol32((c), 16))
4083 ++
4084 ++#define HSIPHASH_CONST_0 0U
4085 ++#define HSIPHASH_CONST_1 0U
4086 ++#define HSIPHASH_CONST_2 0x6c796765U
4087 ++#define HSIPHASH_CONST_3 0x74656462U
4088 ++
4089 + #endif /* _LINUX_SIPHASH_H */
4090 +diff --git a/include/linux/timex.h b/include/linux/timex.h
4091 +index 059b18eb1f1fa..3871b06bd302c 100644
4092 +--- a/include/linux/timex.h
4093 ++++ b/include/linux/timex.h
4094 +@@ -62,6 +62,8 @@
4095 + #include <linux/types.h>
4096 + #include <linux/param.h>
4097 +
4098 ++unsigned long random_get_entropy_fallback(void);
4099 ++
4100 + #include <asm/timex.h>
4101 +
4102 + #ifndef random_get_entropy
4103 +@@ -74,8 +76,14 @@
4104 + *
4105 + * By default we use get_cycles() for this purpose, but individual
4106 + * architectures may override this in their asm/timex.h header file.
4107 ++ * If a given arch does not have get_cycles(), then we fallback to
4108 ++ * using random_get_entropy_fallback().
4109 + */
4110 +-#define random_get_entropy() get_cycles()
4111 ++#ifdef get_cycles
4112 ++#define random_get_entropy() ((unsigned long)get_cycles())
4113 ++#else
4114 ++#define random_get_entropy() random_get_entropy_fallback()
4115 ++#endif
4116 + #endif
4117 +
4118 + /*
4119 +diff --git a/include/trace/events/random.h b/include/trace/events/random.h
4120 +deleted file mode 100644
4121 +index a2d9aa16a5d7a..0000000000000
4122 +--- a/include/trace/events/random.h
4123 ++++ /dev/null
4124 +@@ -1,233 +0,0 @@
4125 +-/* SPDX-License-Identifier: GPL-2.0 */
4126 +-#undef TRACE_SYSTEM
4127 +-#define TRACE_SYSTEM random
4128 +-
4129 +-#if !defined(_TRACE_RANDOM_H) || defined(TRACE_HEADER_MULTI_READ)
4130 +-#define _TRACE_RANDOM_H
4131 +-
4132 +-#include <linux/writeback.h>
4133 +-#include <linux/tracepoint.h>
4134 +-
4135 +-TRACE_EVENT(add_device_randomness,
4136 +- TP_PROTO(int bytes, unsigned long IP),
4137 +-
4138 +- TP_ARGS(bytes, IP),
4139 +-
4140 +- TP_STRUCT__entry(
4141 +- __field( int, bytes )
4142 +- __field(unsigned long, IP )
4143 +- ),
4144 +-
4145 +- TP_fast_assign(
4146 +- __entry->bytes = bytes;
4147 +- __entry->IP = IP;
4148 +- ),
4149 +-
4150 +- TP_printk("bytes %d caller %pS",
4151 +- __entry->bytes, (void *)__entry->IP)
4152 +-);
4153 +-
4154 +-DECLARE_EVENT_CLASS(random__mix_pool_bytes,
4155 +- TP_PROTO(int bytes, unsigned long IP),
4156 +-
4157 +- TP_ARGS(bytes, IP),
4158 +-
4159 +- TP_STRUCT__entry(
4160 +- __field( int, bytes )
4161 +- __field(unsigned long, IP )
4162 +- ),
4163 +-
4164 +- TP_fast_assign(
4165 +- __entry->bytes = bytes;
4166 +- __entry->IP = IP;
4167 +- ),
4168 +-
4169 +- TP_printk("input pool: bytes %d caller %pS",
4170 +- __entry->bytes, (void *)__entry->IP)
4171 +-);
4172 +-
4173 +-DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes,
4174 +- TP_PROTO(int bytes, unsigned long IP),
4175 +-
4176 +- TP_ARGS(bytes, IP)
4177 +-);
4178 +-
4179 +-DEFINE_EVENT(random__mix_pool_bytes, mix_pool_bytes_nolock,
4180 +- TP_PROTO(int bytes, unsigned long IP),
4181 +-
4182 +- TP_ARGS(bytes, IP)
4183 +-);
4184 +-
4185 +-TRACE_EVENT(credit_entropy_bits,
4186 +- TP_PROTO(int bits, int entropy_count, unsigned long IP),
4187 +-
4188 +- TP_ARGS(bits, entropy_count, IP),
4189 +-
4190 +- TP_STRUCT__entry(
4191 +- __field( int, bits )
4192 +- __field( int, entropy_count )
4193 +- __field(unsigned long, IP )
4194 +- ),
4195 +-
4196 +- TP_fast_assign(
4197 +- __entry->bits = bits;
4198 +- __entry->entropy_count = entropy_count;
4199 +- __entry->IP = IP;
4200 +- ),
4201 +-
4202 +- TP_printk("input pool: bits %d entropy_count %d caller %pS",
4203 +- __entry->bits, __entry->entropy_count, (void *)__entry->IP)
4204 +-);
4205 +-
4206 +-TRACE_EVENT(debit_entropy,
4207 +- TP_PROTO(int debit_bits),
4208 +-
4209 +- TP_ARGS( debit_bits),
4210 +-
4211 +- TP_STRUCT__entry(
4212 +- __field( int, debit_bits )
4213 +- ),
4214 +-
4215 +- TP_fast_assign(
4216 +- __entry->debit_bits = debit_bits;
4217 +- ),
4218 +-
4219 +- TP_printk("input pool: debit_bits %d", __entry->debit_bits)
4220 +-);
4221 +-
4222 +-TRACE_EVENT(add_input_randomness,
4223 +- TP_PROTO(int input_bits),
4224 +-
4225 +- TP_ARGS(input_bits),
4226 +-
4227 +- TP_STRUCT__entry(
4228 +- __field( int, input_bits )
4229 +- ),
4230 +-
4231 +- TP_fast_assign(
4232 +- __entry->input_bits = input_bits;
4233 +- ),
4234 +-
4235 +- TP_printk("input_pool_bits %d", __entry->input_bits)
4236 +-);
4237 +-
4238 +-TRACE_EVENT(add_disk_randomness,
4239 +- TP_PROTO(dev_t dev, int input_bits),
4240 +-
4241 +- TP_ARGS(dev, input_bits),
4242 +-
4243 +- TP_STRUCT__entry(
4244 +- __field( dev_t, dev )
4245 +- __field( int, input_bits )
4246 +- ),
4247 +-
4248 +- TP_fast_assign(
4249 +- __entry->dev = dev;
4250 +- __entry->input_bits = input_bits;
4251 +- ),
4252 +-
4253 +- TP_printk("dev %d,%d input_pool_bits %d", MAJOR(__entry->dev),
4254 +- MINOR(__entry->dev), __entry->input_bits)
4255 +-);
4256 +-
4257 +-DECLARE_EVENT_CLASS(random__get_random_bytes,
4258 +- TP_PROTO(int nbytes, unsigned long IP),
4259 +-
4260 +- TP_ARGS(nbytes, IP),
4261 +-
4262 +- TP_STRUCT__entry(
4263 +- __field( int, nbytes )
4264 +- __field(unsigned long, IP )
4265 +- ),
4266 +-
4267 +- TP_fast_assign(
4268 +- __entry->nbytes = nbytes;
4269 +- __entry->IP = IP;
4270 +- ),
4271 +-
4272 +- TP_printk("nbytes %d caller %pS", __entry->nbytes, (void *)__entry->IP)
4273 +-);
4274 +-
4275 +-DEFINE_EVENT(random__get_random_bytes, get_random_bytes,
4276 +- TP_PROTO(int nbytes, unsigned long IP),
4277 +-
4278 +- TP_ARGS(nbytes, IP)
4279 +-);
4280 +-
4281 +-DEFINE_EVENT(random__get_random_bytes, get_random_bytes_arch,
4282 +- TP_PROTO(int nbytes, unsigned long IP),
4283 +-
4284 +- TP_ARGS(nbytes, IP)
4285 +-);
4286 +-
4287 +-DECLARE_EVENT_CLASS(random__extract_entropy,
4288 +- TP_PROTO(int nbytes, int entropy_count, unsigned long IP),
4289 +-
4290 +- TP_ARGS(nbytes, entropy_count, IP),
4291 +-
4292 +- TP_STRUCT__entry(
4293 +- __field( int, nbytes )
4294 +- __field( int, entropy_count )
4295 +- __field(unsigned long, IP )
4296 +- ),
4297 +-
4298 +- TP_fast_assign(
4299 +- __entry->nbytes = nbytes;
4300 +- __entry->entropy_count = entropy_count;
4301 +- __entry->IP = IP;
4302 +- ),
4303 +-
4304 +- TP_printk("input pool: nbytes %d entropy_count %d caller %pS",
4305 +- __entry->nbytes, __entry->entropy_count, (void *)__entry->IP)
4306 +-);
4307 +-
4308 +-
4309 +-DEFINE_EVENT(random__extract_entropy, extract_entropy,
4310 +- TP_PROTO(int nbytes, int entropy_count, unsigned long IP),
4311 +-
4312 +- TP_ARGS(nbytes, entropy_count, IP)
4313 +-);
4314 +-
4315 +-TRACE_EVENT(urandom_read,
4316 +- TP_PROTO(int got_bits, int pool_left, int input_left),
4317 +-
4318 +- TP_ARGS(got_bits, pool_left, input_left),
4319 +-
4320 +- TP_STRUCT__entry(
4321 +- __field( int, got_bits )
4322 +- __field( int, pool_left )
4323 +- __field( int, input_left )
4324 +- ),
4325 +-
4326 +- TP_fast_assign(
4327 +- __entry->got_bits = got_bits;
4328 +- __entry->pool_left = pool_left;
4329 +- __entry->input_left = input_left;
4330 +- ),
4331 +-
4332 +- TP_printk("got_bits %d nonblocking_pool_entropy_left %d "
4333 +- "input_entropy_left %d", __entry->got_bits,
4334 +- __entry->pool_left, __entry->input_left)
4335 +-);
4336 +-
4337 +-TRACE_EVENT(prandom_u32,
4338 +-
4339 +- TP_PROTO(unsigned int ret),
4340 +-
4341 +- TP_ARGS(ret),
4342 +-
4343 +- TP_STRUCT__entry(
4344 +- __field( unsigned int, ret)
4345 +- ),
4346 +-
4347 +- TP_fast_assign(
4348 +- __entry->ret = ret;
4349 +- ),
4350 +-
4351 +- TP_printk("ret=%u" , __entry->ret)
4352 +-);
4353 +-
4354 +-#endif /* _TRACE_RANDOM_H */
4355 +-
4356 +-/* This part must be outside protection */
4357 +-#include <trace/define_trace.h>
4358 +diff --git a/init/main.c b/init/main.c
4359 +index 9a5097b2251a5..0aa2e1c17b1c3 100644
4360 +--- a/init/main.c
4361 ++++ b/init/main.c
4362 +@@ -1035,21 +1035,18 @@ asmlinkage __visible void __init __no_sanitize_address start_kernel(void)
4363 + softirq_init();
4364 + timekeeping_init();
4365 + kfence_init();
4366 ++ time_init();
4367 +
4368 + /*
4369 + * For best initial stack canary entropy, prepare it after:
4370 + * - setup_arch() for any UEFI RNG entropy and boot cmdline access
4371 +- * - timekeeping_init() for ktime entropy used in rand_initialize()
4372 +- * - rand_initialize() to get any arch-specific entropy like RDRAND
4373 +- * - add_latent_entropy() to get any latent entropy
4374 +- * - adding command line entropy
4375 ++ * - timekeeping_init() for ktime entropy used in random_init()
4376 ++ * - time_init() for making random_get_entropy() work on some platforms
4377 ++ * - random_init() to initialize the RNG from from early entropy sources
4378 + */
4379 +- rand_initialize();
4380 +- add_latent_entropy();
4381 +- add_device_randomness(command_line, strlen(command_line));
4382 ++ random_init(command_line);
4383 + boot_init_stack_canary();
4384 +
4385 +- time_init();
4386 + perf_event_init();
4387 + profile_init();
4388 + call_function_init();
4389 +diff --git a/kernel/cpu.c b/kernel/cpu.c
4390 +index 5601216eb51bd..da871eb075662 100644
4391 +--- a/kernel/cpu.c
4392 ++++ b/kernel/cpu.c
4393 +@@ -34,6 +34,7 @@
4394 + #include <linux/scs.h>
4395 + #include <linux/percpu-rwsem.h>
4396 + #include <linux/cpuset.h>
4397 ++#include <linux/random.h>
4398 +
4399 + #include <trace/events/power.h>
4400 + #define CREATE_TRACE_POINTS
4401 +@@ -1659,6 +1660,11 @@ static struct cpuhp_step cpuhp_hp_states[] = {
4402 + .startup.single = perf_event_init_cpu,
4403 + .teardown.single = perf_event_exit_cpu,
4404 + },
4405 ++ [CPUHP_RANDOM_PREPARE] = {
4406 ++ .name = "random:prepare",
4407 ++ .startup.single = random_prepare_cpu,
4408 ++ .teardown.single = NULL,
4409 ++ },
4410 + [CPUHP_WORKQUEUE_PREP] = {
4411 + .name = "workqueue:prepare",
4412 + .startup.single = workqueue_prepare_cpu,
4413 +@@ -1782,6 +1788,11 @@ static struct cpuhp_step cpuhp_hp_states[] = {
4414 + .startup.single = workqueue_online_cpu,
4415 + .teardown.single = workqueue_offline_cpu,
4416 + },
4417 ++ [CPUHP_AP_RANDOM_ONLINE] = {
4418 ++ .name = "random:online",
4419 ++ .startup.single = random_online_cpu,
4420 ++ .teardown.single = NULL,
4421 ++ },
4422 + [CPUHP_AP_RCUTREE_ONLINE] = {
4423 + .name = "RCU/tree:online",
4424 + .startup.single = rcutree_online_cpu,
4425 +diff --git a/kernel/time/timekeeping.c b/kernel/time/timekeeping.c
4426 +index 3b1398fbddaf8..871c912860ed5 100644
4427 +--- a/kernel/time/timekeeping.c
4428 ++++ b/kernel/time/timekeeping.c
4429 +@@ -17,6 +17,7 @@
4430 + #include <linux/clocksource.h>
4431 + #include <linux/jiffies.h>
4432 + #include <linux/time.h>
4433 ++#include <linux/timex.h>
4434 + #include <linux/tick.h>
4435 + #include <linux/stop_machine.h>
4436 + #include <linux/pvclock_gtod.h>
4437 +@@ -2380,6 +2381,20 @@ static int timekeeping_validate_timex(const struct __kernel_timex *txc)
4438 + return 0;
4439 + }
4440 +
4441 ++/**
4442 ++ * random_get_entropy_fallback - Returns the raw clock source value,
4443 ++ * used by random.c for platforms with no valid random_get_entropy().
4444 ++ */
4445 ++unsigned long random_get_entropy_fallback(void)
4446 ++{
4447 ++ struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono;
4448 ++ struct clocksource *clock = READ_ONCE(tkr->clock);
4449 ++
4450 ++ if (unlikely(timekeeping_suspended || !clock))
4451 ++ return 0;
4452 ++ return clock->read(clock);
4453 ++}
4454 ++EXPORT_SYMBOL_GPL(random_get_entropy_fallback);
4455 +
4456 + /**
4457 + * do_adjtimex() - Accessor function to NTP __do_adjtimex function
4458 +diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug
4459 +index 440fd666c16d1..c7dfe1000111d 100644
4460 +--- a/lib/Kconfig.debug
4461 ++++ b/lib/Kconfig.debug
4462 +@@ -1566,8 +1566,7 @@ config WARN_ALL_UNSEEDED_RANDOM
4463 + so architecture maintainers really need to do what they can
4464 + to get the CRNG seeded sooner after the system is booted.
4465 + However, since users cannot do anything actionable to
4466 +- address this, by default the kernel will issue only a single
4467 +- warning for the first use of unseeded randomness.
4468 ++ address this, by default this option is disabled.
4469 +
4470 + Say Y here if you want to receive warnings for all uses of
4471 + unseeded randomness. This will be of use primarily for
4472 +diff --git a/lib/random32.c b/lib/random32.c
4473 +index a57a0e18819d0..976632003ec65 100644
4474 +--- a/lib/random32.c
4475 ++++ b/lib/random32.c
4476 +@@ -41,7 +41,6 @@
4477 + #include <linux/bitops.h>
4478 + #include <linux/slab.h>
4479 + #include <asm/unaligned.h>
4480 +-#include <trace/events/random.h>
4481 +
4482 + /**
4483 + * prandom_u32_state - seeded pseudo-random number generator.
4484 +@@ -387,7 +386,6 @@ u32 prandom_u32(void)
4485 + struct siprand_state *state = get_cpu_ptr(&net_rand_state);
4486 + u32 res = siprand_u32(state);
4487 +
4488 +- trace_prandom_u32(res);
4489 + put_cpu_ptr(&net_rand_state);
4490 + return res;
4491 + }
4492 +@@ -553,9 +551,11 @@ static void prandom_reseed(struct timer_list *unused)
4493 + * To avoid worrying about whether it's safe to delay that interrupt
4494 + * long enough to seed all CPUs, just schedule an immediate timer event.
4495 + */
4496 +-static void prandom_timer_start(struct random_ready_callback *unused)
4497 ++static int prandom_timer_start(struct notifier_block *nb,
4498 ++ unsigned long action, void *data)
4499 + {
4500 + mod_timer(&seed_timer, jiffies);
4501 ++ return 0;
4502 + }
4503 +
4504 + #ifdef CONFIG_RANDOM32_SELFTEST
4505 +@@ -619,13 +619,13 @@ core_initcall(prandom32_state_selftest);
4506 + */
4507 + static int __init prandom_init_late(void)
4508 + {
4509 +- static struct random_ready_callback random_ready = {
4510 +- .func = prandom_timer_start
4511 ++ static struct notifier_block random_ready = {
4512 ++ .notifier_call = prandom_timer_start
4513 + };
4514 +- int ret = add_random_ready_callback(&random_ready);
4515 ++ int ret = register_random_ready_notifier(&random_ready);
4516 +
4517 + if (ret == -EALREADY) {
4518 +- prandom_timer_start(&random_ready);
4519 ++ prandom_timer_start(&random_ready, 0, NULL);
4520 + ret = 0;
4521 + }
4522 + return ret;
4523 +diff --git a/lib/siphash.c b/lib/siphash.c
4524 +index 72b9068ab57bf..71d315a6ad623 100644
4525 +--- a/lib/siphash.c
4526 ++++ b/lib/siphash.c
4527 +@@ -18,19 +18,13 @@
4528 + #include <asm/word-at-a-time.h>
4529 + #endif
4530 +
4531 +-#define SIPROUND \
4532 +- do { \
4533 +- v0 += v1; v1 = rol64(v1, 13); v1 ^= v0; v0 = rol64(v0, 32); \
4534 +- v2 += v3; v3 = rol64(v3, 16); v3 ^= v2; \
4535 +- v0 += v3; v3 = rol64(v3, 21); v3 ^= v0; \
4536 +- v2 += v1; v1 = rol64(v1, 17); v1 ^= v2; v2 = rol64(v2, 32); \
4537 +- } while (0)
4538 ++#define SIPROUND SIPHASH_PERMUTATION(v0, v1, v2, v3)
4539 +
4540 + #define PREAMBLE(len) \
4541 +- u64 v0 = 0x736f6d6570736575ULL; \
4542 +- u64 v1 = 0x646f72616e646f6dULL; \
4543 +- u64 v2 = 0x6c7967656e657261ULL; \
4544 +- u64 v3 = 0x7465646279746573ULL; \
4545 ++ u64 v0 = SIPHASH_CONST_0; \
4546 ++ u64 v1 = SIPHASH_CONST_1; \
4547 ++ u64 v2 = SIPHASH_CONST_2; \
4548 ++ u64 v3 = SIPHASH_CONST_3; \
4549 + u64 b = ((u64)(len)) << 56; \
4550 + v3 ^= key->key[1]; \
4551 + v2 ^= key->key[0]; \
4552 +@@ -389,19 +383,13 @@ u32 hsiphash_4u32(const u32 first, const u32 second, const u32 third,
4553 + }
4554 + EXPORT_SYMBOL(hsiphash_4u32);
4555 + #else
4556 +-#define HSIPROUND \
4557 +- do { \
4558 +- v0 += v1; v1 = rol32(v1, 5); v1 ^= v0; v0 = rol32(v0, 16); \
4559 +- v2 += v3; v3 = rol32(v3, 8); v3 ^= v2; \
4560 +- v0 += v3; v3 = rol32(v3, 7); v3 ^= v0; \
4561 +- v2 += v1; v1 = rol32(v1, 13); v1 ^= v2; v2 = rol32(v2, 16); \
4562 +- } while (0)
4563 ++#define HSIPROUND HSIPHASH_PERMUTATION(v0, v1, v2, v3)
4564 +
4565 + #define HPREAMBLE(len) \
4566 +- u32 v0 = 0; \
4567 +- u32 v1 = 0; \
4568 +- u32 v2 = 0x6c796765U; \
4569 +- u32 v3 = 0x74656462U; \
4570 ++ u32 v0 = HSIPHASH_CONST_0; \
4571 ++ u32 v1 = HSIPHASH_CONST_1; \
4572 ++ u32 v2 = HSIPHASH_CONST_2; \
4573 ++ u32 v3 = HSIPHASH_CONST_3; \
4574 + u32 b = ((u32)(len)) << 24; \
4575 + v3 ^= key->key[1]; \
4576 + v2 ^= key->key[0]; \
4577 +diff --git a/lib/vsprintf.c b/lib/vsprintf.c
4578 +index fbf261bbea950..35cc358f8daee 100644
4579 +--- a/lib/vsprintf.c
4580 ++++ b/lib/vsprintf.c
4581 +@@ -762,14 +762,16 @@ static void enable_ptr_key_workfn(struct work_struct *work)
4582 +
4583 + static DECLARE_WORK(enable_ptr_key_work, enable_ptr_key_workfn);
4584 +
4585 +-static void fill_random_ptr_key(struct random_ready_callback *unused)
4586 ++static int fill_random_ptr_key(struct notifier_block *nb,
4587 ++ unsigned long action, void *data)
4588 + {
4589 + /* This may be in an interrupt handler. */
4590 + queue_work(system_unbound_wq, &enable_ptr_key_work);
4591 ++ return 0;
4592 + }
4593 +
4594 +-static struct random_ready_callback random_ready = {
4595 +- .func = fill_random_ptr_key
4596 ++static struct notifier_block random_ready = {
4597 ++ .notifier_call = fill_random_ptr_key
4598 + };
4599 +
4600 + static int __init initialize_ptr_random(void)
4601 +@@ -783,7 +785,7 @@ static int __init initialize_ptr_random(void)
4602 + return 0;
4603 + }
4604 +
4605 +- ret = add_random_ready_callback(&random_ready);
4606 ++ ret = register_random_ready_notifier(&random_ready);
4607 + if (!ret) {
4608 + return 0;
4609 + } else if (ret == -EALREADY) {
4610 +diff --git a/mm/util.c b/mm/util.c
4611 +index d3102081add00..5223d7e2f65ec 100644
4612 +--- a/mm/util.c
4613 ++++ b/mm/util.c
4614 +@@ -343,6 +343,38 @@ unsigned long randomize_stack_top(unsigned long stack_top)
4615 + #endif
4616 + }
4617 +
4618 ++/**
4619 ++ * randomize_page - Generate a random, page aligned address
4620 ++ * @start: The smallest acceptable address the caller will take.
4621 ++ * @range: The size of the area, starting at @start, within which the
4622 ++ * random address must fall.
4623 ++ *
4624 ++ * If @start + @range would overflow, @range is capped.
4625 ++ *
4626 ++ * NOTE: Historical use of randomize_range, which this replaces, presumed that
4627 ++ * @start was already page aligned. We now align it regardless.
4628 ++ *
4629 ++ * Return: A page aligned address within [start, start + range). On error,
4630 ++ * @start is returned.
4631 ++ */
4632 ++unsigned long randomize_page(unsigned long start, unsigned long range)
4633 ++{
4634 ++ if (!PAGE_ALIGNED(start)) {
4635 ++ range -= PAGE_ALIGN(start) - start;
4636 ++ start = PAGE_ALIGN(start);
4637 ++ }
4638 ++
4639 ++ if (start > ULONG_MAX - range)
4640 ++ range = ULONG_MAX - start;
4641 ++
4642 ++ range >>= PAGE_SHIFT;
4643 ++
4644 ++ if (range == 0)
4645 ++ return start;
4646 ++
4647 ++ return start + (get_random_long() % range << PAGE_SHIFT);
4648 ++}
4649 ++
4650 + #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
4651 + unsigned long arch_randomize_brk(struct mm_struct *mm)
4652 + {
4653 +diff --git a/sound/pci/ctxfi/ctatc.c b/sound/pci/ctxfi/ctatc.c
4654 +index 78f35e88aed6b..fbdb8a3d5b8e5 100644
4655 +--- a/sound/pci/ctxfi/ctatc.c
4656 ++++ b/sound/pci/ctxfi/ctatc.c
4657 +@@ -36,6 +36,7 @@
4658 + | ((IEC958_AES3_CON_FS_48000) << 24))
4659 +
4660 + static const struct snd_pci_quirk subsys_20k1_list[] = {
4661 ++ SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0021, "SB046x", CTSB046X),
4662 + SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
4663 + SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
4664 + SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
4665 +@@ -64,6 +65,7 @@ static const struct snd_pci_quirk subsys_20k2_list[] = {
4666 +
4667 + static const char *ct_subsys_name[NUM_CTCARDS] = {
4668 + /* 20k1 models */
4669 ++ [CTSB046X] = "SB046x",
4670 + [CTSB055X] = "SB055x",
4671 + [CTSB073X] = "SB073x",
4672 + [CTUAA] = "UAA",
4673 +diff --git a/sound/pci/ctxfi/cthardware.h b/sound/pci/ctxfi/cthardware.h
4674 +index f406b626a28c4..2875cec83b8f2 100644
4675 +--- a/sound/pci/ctxfi/cthardware.h
4676 ++++ b/sound/pci/ctxfi/cthardware.h
4677 +@@ -26,8 +26,9 @@ enum CHIPTYP {
4678 +
4679 + enum CTCARDS {
4680 + /* 20k1 models */
4681 ++ CTSB046X,
4682 ++ CT20K1_MODEL_FIRST = CTSB046X,
4683 + CTSB055X,
4684 +- CT20K1_MODEL_FIRST = CTSB055X,
4685 + CTSB073X,
4686 + CTUAA,
4687 + CT20K1_UNKNOWN,